Transovarial Transmission of a Plant Virus Is Mediated by Vitellogenin of Its Insect Vector
Numerous parasites including viruses, bacteria, and microsporidia can be maternally transmitted, with the parasite passing from mother to offspring, usually through eggs. However, the process of the parasites spreading into eggs from primarily infected tissues and the factors that mediate this process in live hosts or vectors are unknown due to the lack of useful tools. Here, we used several techniques to investigate the molecular mechanisms of transovarial transmission of Rice stripe virus (RSV), a plant virus belonging to the genus Tenuivirus, by its insect vector (Laodelphax striatellus). We found that the nucleocapsid protein of RSV bound to insect's vitellogenin (Vg) in vitro and in vivo. We also found that RSV invaded the egg tubes of the ovariole until Vg is highly expressed, then colocalized with Vg in the germarium. When Vg expression was knocked down due to RNA interference, the invasion of ovarioles by RSV decreased largely. Our study provides new insights into the transovarial transmission of an important viral pathogen that uses existing transovarial transportation systems in insect vectors to invade eggs.
Vyšlo v časopise:
Transovarial Transmission of a Plant Virus Is Mediated by Vitellogenin of Its Insect Vector. PLoS Pathog 10(3): e32767. doi:10.1371/journal.ppat.1003949
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003949
Souhrn
Numerous parasites including viruses, bacteria, and microsporidia can be maternally transmitted, with the parasite passing from mother to offspring, usually through eggs. However, the process of the parasites spreading into eggs from primarily infected tissues and the factors that mediate this process in live hosts or vectors are unknown due to the lack of useful tools. Here, we used several techniques to investigate the molecular mechanisms of transovarial transmission of Rice stripe virus (RSV), a plant virus belonging to the genus Tenuivirus, by its insect vector (Laodelphax striatellus). We found that the nucleocapsid protein of RSV bound to insect's vitellogenin (Vg) in vitro and in vivo. We also found that RSV invaded the egg tubes of the ovariole until Vg is highly expressed, then colocalized with Vg in the germarium. When Vg expression was knocked down due to RNA interference, the invasion of ovarioles by RSV decreased largely. Our study provides new insights into the transovarial transmission of an important viral pathogen that uses existing transovarial transportation systems in insect vectors to invade eggs.
Zdroje
1. HogenhoutSA, AmmarE, WhitfieldAE, RedinbaughMG (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46: 327–359.
2. GraySM, BanerjeeN (1999) Mechanisms of arthropod transmission of plant and animal virus. Microbiol Mol Biol Rev 63: 128–148.
3. AmmarED (1994) Propagative transmission of plant and animal viruses by insects: Factors affecting vector specificity and competence. Adv Dis Vector Res 10: 289–332.
4. Hardy J (1988) Susceptibility and resistance of vector mosquitoes. In: Nionath TP ed. In The Arboviruses: Epidemiology and Ecology. Boca Raton, CRC Press. pp 87–126.
5. AmmarED, HogenhoutSA (2008) A neurotropic route for Maize mosaic virus (Rhabdoviridae) in its planthopper vector Peregrinus maidis. Virus Res 131: 77–85.
6. AmmarED, TsaiCW, WhitfieldAE, RedinbaughMG, HogenhoutSA (2009) Cellular and molecular aspects of rhabdovirus interactions with insect and plant hosts. Annu Rev Entomol 54: 447–468.
7. FalkBW, TsaiJH (1998) Biology and molecular biology of viruses in the genus Tenuiviurs. Annu Rev Phytopathol 36: 139–163.
8. NaultLR (1989) Leafhopper and planthopper transmission of plant viruses. Ann Rev Entomol 34: 503–529.
9. HondaK, WeiT, HagiwaraK, HigashiT, KimuraI, et al. (2007) Retention of Rice dwarf virus by Descendants of Pairs of Viruliferous Vector Insects After Rearing for 6 Years. Phytopathology 97: 712–716.
10. DouglasAE (1989) Mycetocyte symbiosis in insects. Biol Rev Camb Philos Soc 64: 409–434.
11. TufailM, TakedaM (2008) Molecular characteristics of insect vitellogenins. J Insect Physiol 54: 1447–1458.
12. TufailM, TakedaM (2009) Insect vitellogenin/lipophorin receptors: molecular structures, role in oogenesis, and regulatory mechanisms. J Insect Physiol 55: 87–103.
13. ChengDJ, HouRF (2005) Determination and distribution of a female-specific protein in the brown planthopper, Nilaparvata lugens Stal (Homoptera: Delphacidae). Tissue & cell 37: 37–45.
14. LeblancP, DessetS, GiorgiF, TaddelAR, FaustoAM, et al. (2000) Life Cycle of an Endogenous Retrovirus, ZAM, in Drosophila melanogaster. JVirol 74: 10658–10669.
15. BrassetE, TaddeiAR, ArnaudF, FayeB, FaustoAM, et al. (2006) Viral particles of the endogenous retrovirus ZAM from Drosophila melanogaster use a pre-existing endosome/exosome pathway for transfer to the oocyte. Retrovirology 3: 25.
16. BoldbaatarD, BattsetsegB, MatsuoT, HattaT, Umemiy-ShirafujiR, et al. (2008) Tick vitellogenin receptor reveals critical role in oocyte development and transovarial transmission of Babesia parasite. Biochem Cell Biol 86: 331–344.
17. NodaH (1977) Histological and Histochemical Obervation of Tntracellular Yeastlike Symbiotes in the Fat Boday of the Smaller Brown Planthopper, Laodelophax stratellus (Homotera : Delphacidae). Japanese Society of Applied Entomology and Zoology 12: 134–141.
18. HibinoH (1996) Biology and epidemiology of rice viruses. Annu Rev Phytopathol 34: 249–274.
19. BÜNINGJ (2006) Ovariole Structure Supports Sistergroup Relationship of Neuropterida and Coleoptera. Arthropod Systematics & Phylogeny 64: 115–126.
20. Ramírez-CruzA, Llanderal-CázaresC, RacottaR (2008) Ovariole structure of the cochineal scale insect, Dactylopius coccus. J Insect Sci 8: 20.
21. SzklarzewiczT, Kalandyk-KolodziejczykM, KotM, MichalikA (2013) Ovary structure and transovarial transmission of endosymbiotic microorganisms in Marchalina hellenica (Insecta, Hemiptera, Coccomorpha: Marchalinidae). Acta Zoologica 94: 182–194.
22. OgorzalekA, TrochimczukA (2009) Ovary structure in a presocial insect, Elasmucha grisea (Heteroptera, Acanthosomatidae). Arthropod Struct Dev 38: 509–519.
23. SzklarzewiczT, JankowskaW, WieczorekK, WęgierekP (2009) Structure of the ovaries of the primitive aphidsPhylloxera coccineaandPhylloxera glabra(Hemiptera, Aphidinea: Phylloxeridae). Acta Zoologica 90: 123–131.
24. ZhangF, GuoH, ZhengH, ZhouT, ZhouY, WangS, et al. (2010) Massively parallel pyrosequencing-based transcriptome analyses of small brown planthopper (Laodelphax striatellus), a vector insect transmitting rice stripe virus (RSV). BMC genomics 11: 303.
25. DalvinS, FrostP, LoeffenP, Skern-MauritzenR, BabanJ, et al. (2011) Characterisation of two vitellogenins in the salmon louse Lepeophtheirus salmonis: molecular, functional and evolutional analysis. Dis Aquat Organ 94: 211–224.
26. AvarreJC, LubzensE, BabinPJ (2007) Apolipocrustacein, formerly vitellogenin, is the major egg yolk precursor protein in decapod crustaceans and is homologous to insect apolipophorin II/I and vertebrate apolipoprotein B. BMC Evol Biol 7: 3.
27. BabinPJ, GibbonsGF (2009) The evolution of plasma cholesterol: direct utility or a “spandrel” of hepatic lipid metabolism? Prog Lipid Res 48: 73–91.
28. BownesM (1989) The roles of juvenile hormone, ecdysone and the ovary in the control of Drosophila vitellogenesis. J Insect Physiol 35: 409–413.
29. CampbellCM, IdlerDR (1976) Hormonal control of vitellogenesis in hypophysectomized winter flounder (Pseudopleuronectes americanus Walbaum). Gen Comp Endocr 28: 143–150.
30. WallaceRA, BerginkEW (1974) Amphibian Vitellogenin: Properties, Hormonal Regulation of Hepatic Synthesis and Ovarian Uptake, and Conversion to Yolk Proteins. Soc Integ Comp Biol 14: 1159–1175.
31. HoSM, KleisS, McphersonR, HeisermannGJ, CallardIP (1982) Regulation of vitellogenesis in reptiles. Hrepetologica 38: 40–50.
32. SchwablH (1993) Yolk is a source of maternal testosterone for developing birds. Proc Natl Acad Sci 90: 11446–11450.
33. RaikhelAS, DhadiallalTS (1992) Accumulation of yolk proteins in insect oovytes. Annu Rev Entomol 37: 217–251.
34. SappingtonTW, RaikhelAS (1998) Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochem Molec 28: 277–300.
35. Snigirevskaya ES, Raikhel AS (2005) Receptor-mediated endocytosis of yolk proteins in insect oocytes. In:Raikhel AS, Sappington TW, editors. Progress in vitellogenesis. Reproductive biology of invertebrates. USA: Science Publishers. pp. 199–228.
36. ChoKH, CheonHM, KokozaV, RaikhelAS (2006) Regulatory region of the vitellogenin receptor gene sufficient for high-level, germ line cell-specific ovarian expression in transgenic Aedes aegypti mosquitoes. Insect Biochem Molec 36: 273–281.
37. ZelazowskaM (2005) Structure of the Ovary and the Differentiation of Follicular Epithelium in the Pig Louse, Haematopinus suis (Insecta: Phthiraptera). Folia Biol 53: 51–60.
38. Belles X (2005) Vitellogenesis directed by juvenile hormone. In: Raikhel AS, Sappington TW eds. Reproductive Biology of Invertebrates, Science Publishers Press. pp 157–197.
39. Giorgi F, Snigirevskaya E S, Raikhel AS (2005) The cell biology of yolk protein precursor synthesis and secretion. In: Raikhel AS, Sappington TW eds. Reproductive Biology of Invertebrates, Science Publishers Press. pp 33–68.
40. ShuYH, WangJ, LuWK, ZhouJL, ZhouQ, et al. (2011) The first vitellogenin receptor from a Lepidopteran insect: molecular characterization, expression patterns and RNA interference analysis. Insect Mol Biol 20: 61–73.
41. LiuS, DingZ, ZhangC, YangB, LiuZ (2010) Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Insect Biochem Molec 40: 666–671.
42. MichalikA, JankowskaW, SzklarzewiczT (2008) Ultrastructure and Transovarial Transmission of EndosymbioticMicroorganisms in Conomelus anceps and Metcalfa pruinosa (Insecta, Hemiptera, Fulgoromorpha). Folia Biol 57: 131–137.
43. SacchiL, GenchiM, ClementiE, BigliardiE, AvanzatiAM, et al. (2008) Multiple symbiosis in the leafhopper Scaphoideus titanus (Hemiptera: Cicadellidae): details of transovarial transmission of Cardinium sp. and yeast-like endosymbionts. Tissue & cell 40: 231–242.
44. SwiatoniowskaM, OgorzalekA, GolasA, MichalikA, SzklarzewiczT (2012) Ultrastructure, distribution, and transovarial transmission of symbiotic microorganisms in Nysius ericae and Nithecus jacobaeae (Heteroptera: Lygaeidae: Orsillinae). Protoplasma 250 (1) 325–32.
45. SzklarzewiczT, WnekA, BilinskiSM (2000) Structure of ovarioles in Adelges laricis, a representative of the primitive aphid family Adelgidae. Acta Zool-Stockholm 81: 307–313.
46. SzklarzewiczT, KedraK, NiznikS (2006) Ultrastructure and Transovarial Transmission of Endosymbiotic Microorganisms in Palaeococcus fuscipennis (Burmeister) (Insecta, Hemiptera, Coccinea: Monophlebidae). Folia Biol 54: 69–74.
47. SerbusLR, Casper-LindleyC, LandmannF, SullivanW (2008) The genetics and cell biology of Wolbachia-host interactions. Annu Rev Genet 42: 683–707.
48. BuningJ (2005) The telotrophic ovary known from Neuropterida exists also in the myxophagan beetle Hydroscapha natans. Dev Genes Evol 215: 597–607.
49. FrydmanHM, LiJM, RobsonDN, WieschausE (2006) Somatic stem cell niche tropism in Wolbachia. Nature 441: 509–512.
50. TraunerJ, BuningJ (2007) Germ-cell cluster formation in the telotrophic meroistic ovary of Tribolium castaneum (Coleoptera, Polyphaga, Tenebrionidae) and its implication on insect phylogeny. Dev Genes Evol 217: 13–27.
51. SzklarzewiczT, JankowskaW, LukasiewiczK, SzymanskaB (2007) Structure of the ovaries and oogenesis in Cixius nervosus (Cixiidae), Javesella pellucida and Conomelus anceps (Delphacidae) (Insecta, Hemiptera, Fulgoromorpha). Arthropod Struct Dev 36: 199–207.
52. BüningJ (2005) The telotrophic ovary known from Neuropterida exists also in the myxophagan beetle Hydroscapha natans. Dev Genes Evol 215: 597–607.
53. MatovaN, ColleyL (2001) Comparative aspects of animal oogenesis. Dev Biol 231: 291–320.
54. RouilléY, DuguaySJ, LundK, FurutaM, GongQ, et al. (1995) Proteolytic processing mechanisms in thebiosynthesis of neuroendocrine peptides:The subtilisin-like proprotein convertases Frontiers Neuroendocrinol. Front Neuroendocrin 16: 322–361.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 3
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Cytomegalovirus m154 Hinders CD48 Cell-Surface Expression and Promotes Viral Escape from Host Natural Killer Cell Control
- Human African Trypanosomiasis and Immunological Memory: Effect on Phenotypic Lymphocyte Profiles and Humoral Immunity
- DHX36 Enhances RIG-I Signaling by Facilitating PKR-Mediated Antiviral Stress Granule Formation
- Conflicting Interests in the Pathogen–Host Tug of War: Fungal Micronutrient Scavenging Versus Mammalian Nutritional Immunity