A Model System for Studying the Transcriptomic and Physiological Changes Associated with Mammalian Host-Adaptation by Serovar Copenhageni
Leptospirosis, a global disease caused by the unusual bacterium Leptospira, is transmitted from animals to humans. Pathogenic species of Leptospira are excreted in urine from infected animals and can continue to survive in suitable environments before coming into contact with a new reservoir or accidental host. Leptospires have an inherent ability to survive a wide range of conditions encountered in nature during transmission and within mammals. However, we know very little about the regulatory pathways and gene products that promote mammalian host adaptation and enable leptospires to establish infection. In this study, we used a novel system whereby leptospires are cultivated in dialysis membrane chambers implanted into the peritoneal cavities of rats to compare the gene expression profiles of mammalian host-adapted and in vitro-cultivated organisms. In addition to providing a facile system for studying the transcriptional and physiologic changes leptospires undergo during mammalian infection, our data provide a rational basis for selecting new targets for mutagenesis.
Vyšlo v časopise:
A Model System for Studying the Transcriptomic and Physiological Changes Associated with Mammalian Host-Adaptation by Serovar Copenhageni. PLoS Pathog 10(3): e32767. doi:10.1371/journal.ppat.1004004
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004004
Souhrn
Leptospirosis, a global disease caused by the unusual bacterium Leptospira, is transmitted from animals to humans. Pathogenic species of Leptospira are excreted in urine from infected animals and can continue to survive in suitable environments before coming into contact with a new reservoir or accidental host. Leptospires have an inherent ability to survive a wide range of conditions encountered in nature during transmission and within mammals. However, we know very little about the regulatory pathways and gene products that promote mammalian host adaptation and enable leptospires to establish infection. In this study, we used a novel system whereby leptospires are cultivated in dialysis membrane chambers implanted into the peritoneal cavities of rats to compare the gene expression profiles of mammalian host-adapted and in vitro-cultivated organisms. In addition to providing a facile system for studying the transcriptional and physiologic changes leptospires undergo during mammalian infection, our data provide a rational basis for selecting new targets for mutagenesis.
Zdroje
1. KoAI, GoarantC, PicardeauM (2009) Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat Rev Microbiol 7: 736–747.
2. BhartiAR, NallyJE, RicaldiJN, MatthiasMA, DiazMM, et al. (2003) Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis 3: 757–771.
3. AthanazioDA, SilvaEF, SantosCS, RochaGM, Vannier-SantosMA, et al. (2008) Rattus norvegicus as a model for persistent renal colonization by pathogenic Leptospira interrogans. Acta Trop 105: 176–180.
4. MarshallRB (1976) The route of entry of leptospires into the kidney tubule. J Med Microbiol 9: 149–152.
5. FaineS (1957) Virulence in Leptospira. I. Reactions of guinea-pigs to experimental infection with Leptospira icterohaemorrhagiae. British Journal of Experimental Pathology 38: 1–7.
6. AdlerB, LoM, SeemannT, MurrayGL (2011) Pathogenesis of leptospirosis: the influence of genomics. Vet Microbiol 153: 73–81.
7. Faine S, Adler B., Bolin C. and Perolat P. (1999) Leptospira and Leptospirosis. Melbourne, Australia: MediSci.
8. MonahanAM, CallananJJ, NallyJE (2008) Proteomic analysis of Leptospira interrogans shed in urine of chronically infected hosts. Infect Immun 76: 4952–4958.
9. IdoY, HokiR, ItoH, WaniH (1917) The rat as a carrier of Spirocheta icterohaemorrhagiae, the causative agent of Weil's disease (spirochaetosis icterohaemorrhagica. Journal of Experimental Medicine 26: 341–353.
10. Bonilla-SantiagoR, NallyJE (2011) Rat model of chronic leptospirosis. Curr Protoc Microbiol Chapter 12: Unit12E 13.
11. NascimentoAL, KoAI, MartinsEA, Monteiro-VitorelloCB, HoPL, et al. (2004) Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J Bacteriol 186: 2164–2172.
12. NascimentoAL, Verjovski-AlmeidaS, Van SluysMA, Monteiro-VitorelloCB, CamargoLE, et al. (2004) Genome features of Leptospira interrogans serovar Copenhageni. Braz J Med Biol Res 37: 459–477.
13. BulachDM, ZuernerRL, WilsonP, SeemannT, McGrathA, et al. (2006) Genome reduction in Leptospira borgpetersenii reflects limited transmission potential. Proc Natl Acad Sci U S A 103: 14560–14565.
14. PicardeauM, BulachDM, BouchierC, ZuernerRL, ZidaneN, et al. (2008) Genome sequence of the saprophyte Leptospira biflexa provides insights into the evolution of Leptospira and the pathogenesis of leptospirosis. PLoS One 3: e1607.
15. ChouLF, ChenYT, LuCW, KoYC, TangCY, et al. (2012) Sequence of Leptospira santarosai serovar Shermani genome and prediction of virulence-associated genes. Gene 511: 364–370.
16. RicaldiJN, FoutsDE, SelengutJD, HarkinsDM, PatraKP, et al. (2012) Whole genome analysis of Leptospira licerasiae provides insight into leptospiral evolution and pathogenicity. PLoS Negl Trop Dis 6: e1853.
17. XueF, YanJ, PicardeauM (2009) Evolution and pathogenesis of Leptospira spp.: lessons learned from the genomes. Microbes Infect 11: 328–333.
18. LoM, BulachDM, PowellDR, HaakeDA, MatsunagaJ, et al. (2006) Effects of temperature on gene expression patterns in Leptospira interrogans serovar Lai as assessed by whole-genome microarrays. Infect Immun 74: 5848–5859.
19. QinJH, ShengYY, ZhangZM, ShiYZ, HeP, et al. (2006) Genome-wide transcriptional analysis of temperature shift in L. interrogans serovar Lai strain 56601. BMC Microbiol 6: 51.
20. MatsunagaJ, LoM, BulachDM, ZuernerRL, AdlerB, et al. (2007) Response of Leptospira interrogans to physiologic osmolarity: relevance in signaling the environment-to-host transition. Infect Immun 75: 2864–2874.
21. PatarakulK, LoM, AdlerB (2010) Global transcriptomic response of Leptospira interrogans serovar Copenhageni upon exposure to serum. BMC Microbiol 10: 31.
22. LoM, MurrayGL, KhooCA, HaakeDA, ZuernerRL, et al. (2010) Transcriptional response of Leptospira interrogans to iron limitation and characterization of a PerR homolog. Infect Immun 78: 4850–4859.
23. AkinsDR, BourellKW, CaimanoMJ, NorgardMV, RadolfJD (1998) A new animal model for studying Lyme disease spirochetes in a mammalian host-adapted state. Journal of Clinical Investigation 101: 2240–2250.
24. CaimanoMJ (2005) Cultivation of Borrelia burgdorferi in dialysis membrane chambers in rat peritonea. Curr Protoc Microbiol Chapter 12: Unit 12C 13.
25. ThiermannAB (1981) The Norway rat as a selective chronic carrier of Leptospira icterohaemorrhagiae. J Wildl Dis 17: 39–43.
26. LevettPN (2001) Leptospirosis. Clin Microbiol Rev 14: 296–326.
27. CaimanoMJ, IyerR, EggersCH, GonzalezC, MortonEA, et al. (2007) Analysis of the RpoS regulon in Borrelia burgdorferi in response to mammalian host signals provides insight into RpoS function during the enzootic cycle. Molecular Microbiology 65: 1193–1217.
28. RevelAT, TalaatAM, NorgardMV (2002) DNA microarray analysis of differential gene expression in Borrelia burgdorferi, the Lyme disease spirochete. Proceedings of the National Academy of Sciences 99: 1562–1567.
29. BrooksCS, HeftyPS, JolliffSE, AkinsDR (2003) Global analysis of Borrelia burgdorferi genes regulated by mammalian host-specific signals. Infect Immun 71: 3371–3383.
30. CroucherNJ, ThomsonNR (2010) Studying bacterial transcriptomes using RNA-seq. Current Opinion in Microbiology 13: 619–624.
31. FiliatraultMJ (2011) Progress in prokaryotic transcriptomics. Current Opinion in Microbiology 14: 579–586.
32. CaimanoMJ, EggersCH, GonzalezCA, RadolfJD (2005) Alternate sigma factor RpoS is required for the in vivo-specific repression of Borrelia burgdorferi plasmid lp54-borne ospA and lp6.6 genes. Journal of Bacteriology 187: 7845–7852.
33. NarayanavariSA, SritharanM, HaakeDA, MatsunagaJ (2012) Multiple leptospiral sphingomyelinases (or are there?). Microbiology 158: 1137–1146.
34. MatsunagaJ, MedeirosMA, SanchezY, WerneidKF, KoAI (2007) Osmotic regulation of expression of two extracellular matrix-binding proteins and a haemolysin of Leptospira interrogans: differential effects on LigA and Sph2 extracellular release. Microbiology 153: 3390–3398.
35. ArtiushinS, TimoneyJF, NallyJ, VermaA (2004) Host-inducible immunogenic sphingomyelinase-like protein, Lk73.5, of Leptospira interrogans. Infect Immun 72: 742–749.
36. ZhangYX, GengY, BiB, HeJY, WuCF, et al. (2005) Identification and classification of all potential hemolysin encoding genes and their products from Leptospira interrogans serogroup Icterohae-morrhagiae serovar Lai. Acta Pharmacol Sin 26: 453–461.
37. CarvalhoE, BarbosaAS, GomezRM, OliveiraML, RomeroEC, et al. (2010) Evaluation of the expression and protective potential of Leptospiral sphingomyelinases. Curr Microbiol 60: 134–142.
38. HaakeDA, ChaoG, ZuernerRL, BarnettJK, BarnettD, et al. (2000) The leptospiral major outer membrane protein LipL32 is a lipoprotein expressed during mammalian infection. Infect Immun 68: 2276–2285.
39. ShangES, SummersTA, HaakeDA (1996) Molecular cloning and sequence analysis of the gene encoding LipL41, a surface-exposed lipoprotein of pathogenic Leptospira species. Infect Immun 64: 2322–2330.
40. NallyJE, MonahanAM, MillerIS, Bonilla-SantiagoR, SoudaP, et al. (2011) Comparative proteomic analysis of differentially expressed proteins in the urine of reservoir hosts of leptospirosis. PLoS One 6: e26046.
41. BasemanJB, CoxCD (1969) Intermediate energy metabolism of Leptospira. J Bacteriol 97: 992–1000.
42. ZhangQ, ZhangY, ZhongY, MaJ, PengN, et al. (2011) Leptospira interrogans encodes an ROK family glucokinase involved in a cryptic glucose utilization pathway. Acta Biochim Biophys Sin (Shanghai) 43: 618–629.
43. AndersS, HuberW (2010) Differential expression analysis for sequence count data. Genome Biol 11: R106.
44. Marchler-BauerA, ZhengC, ChitsazF, DerbyshireMK, GeerLY, et al. (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41: D348–352.
45. Marchler-BauerA, BryantSH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Research 32: W327–W331.
46. MarcsisinRA, BartphoT, BulachDM, SrikramA, SermswanRW, et al. (2013) Use of a high-throughput screen to identify Leptospira mutants unable to colonise the carrier host or cause disease in the acute model of infection. J Med Microbiol 62(Pt 10): 1601–8.
47. SetubalJC, ReisM, MatsunagaJ, HaakeDA (2006) Lipoprotein computational prediction in spirochaetal genomes. Microbiology 152: 113–121.
48. HaakeDA (2000) Spirochaetal lipoproteins and pathogenesis. Microbiology 146(Pt 7): 1491–1504.
49. JanwitthayananW, KeelawatS, PayungpornS, LowanitchapatA, SuwancharoenD, et al. (2013) In vivo gene expression and immunoreactivity of Leptospira collagenase. Microbiol Res 168: 268–272.
50. ChoyHA, KelleyMM, CrodaJ, MatsunagaJ, BabbittJT, et al. (2011) The multifunctional LigB adhesin binds homeostatic proteins with potential roles in cutaneous infection by pathogenic Leptospira interrogans. PLoS One 6: e16879.
51. LinY-P, McDonoughSP, SharmaY, ChangY-F (2011) Leptospira immunoglobulin-like protein B (LigB) binding to the C-terminal fibrinogen αC domain inhibits fibrin clot formation, platelet adhesion and aggregation. Molecular Microbiology 79: 1063–1076.
52. LinY-P, McDonoughSP, SharmaY, ChangY-F (2010) The terminal immunoglobulin-like repeats of LigA and LigB of Leptospira enhance their binding to gelatin binding domain of fibronectin and host cells. PLoS One 5: e11301.
53. CoutinhoML, ChoyHA, KelleyMM, MatsunagaJ, BabbittJT, et al. (2011) A LigA three-domain region protects hamsters from lethal infection by Leptospira interrogans. PLoS Negl Trop Dis 5: e1422.
54. VaughnJL, FeherV, NaylorS, StrauchMA, CavanaghJ (2000) Novel DNA binding domain and genetic regulation model of Bacillus subtilis transition state regulator AbrB. Nature Structural Biology 7: 1139–1146.
55. BobayBG, MuellerGA, ThompsonRJ, MurzinAG, VentersRA, et al. (2006) NMR structure of AbhN and comparison with AbrBN: FIRST insights into the DNA binding promiscuity and specificity of AbrB-like transition state regulator proteins. J Biol Chem 281: 21399–21409.
56. SullivanDM, BobayBG, KojetinDJ, ThompsonRJ, RanceM, et al. (2008) Insights into the nature of DNA binding of AbrB-like transcription factors. Structure 16: 1702–1713.
57. PoseyJE, GherardiniFC (2000) Lack of a role for iron in the Lyme disease pathogen. Science 288: 1651–1653.
58. LouvelH, BommezzadriS, ZidaneN, Boursaux-EudeC, CrenoS, et al. (2006) Comparative and functional genomic analyses of iron transport and regulation in Leptospira spp. J Bacteriol 188: 7893–7904.
59. NoinajN, GuillierM, BarnardTJ, BuchananSK (2010) TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64: 43–60.
60. MurrayGL, EllisKM, LoM, AdlerB (2008) Leptospira interrogans requires a functional heme oxygenase to scavenge iron from hemoglobin. Microbes Infect 10: 791–797.
61. EscolarL, Perez-MartinJ, de LorenzoV (1999) Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181: 6223–6229.
62. DaveyNE, HaslamNJ, ShieldsDC, EdwardsRJ (2011) SLiMSearch 2.0: biological context for short linear motifs in proteins. Nucleic Acids Research 39: W56–W60.
63. HantkeK (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4: 172–177.
64. ImlayJA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77: 755–776.
65. EshghiA, LourdaultK, MurrayGL, BartphoT, SermswanRW, et al. (2012) Leptospira interrogans catalase is required for resistance to H2O2 and for virulence. Infect Immun 80: 3892–3899.
66. SeaverLC, ImlayJA (2001) Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 183: 7173–7181.
67. ParsonageD, DesrosiersDC, HazlettKR, SunY, NelsonKJ, et al. (2010) Broad specificity AhpC-like peroxiredoxin and its thioredoxin reductant in the sparse antioxidant defense system of Treponema pallidum. Proc Natl Acad Sci U S A 107: 6240–6245.
68. LoM, CordwellSJ, BulachDM, AdlerB (2009) Comparative transcriptional and translational analysis of leptospiral outer membrane protein expression in response to temperature. PLoS Negl Trop Dis 3: e560.
69. NallyJE, TimoneyJF, StevensonB (2001) Temperature-regulated protein synthesis by Leptospira interrogans. Infect Immun 69: 400–404.
70. GalperinMY, NikolskayaAN, KooninEV (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203: 11–21.
71. RamosJL, Martínez-BuenoM, Molina-HenaresAJ, TeránW, WatanabeK, et al. (2005) The TetR family of transcriptional repressors. Microbiology and Molecular Biology Reviews 69: 326–356.
72. Hammer-JespersenK, Munch-PtersenA (1975) Multiple regulation of nucleoside catabolizing enzymes: regulation of the deo operon by the cytR and deoR gene products. Mol Gen Genet 137: 327–335.
73. XuC, ShiW, RosenBP (1996) The chromosomal arsR gene of Escherichia coli encodes a trans-acting metalloregulatory protein. Journal of Biological Chemistry 271: 2427–2432.
74. GueganR, CamadroJM, Saint GironsI, PicardeauM (2003) Leptospira spp. possess a complete haem biosynthetic pathway and are able to use exogenous haem sources. Mol Microbiol 49: 745–754.
75. LouvelH, BettonJM, PicardeauM (2008) Heme rescues a two-component system Leptospira biflexa mutant. BMC Microbiol 8: 25.
76. KazantsevAV, PaceNR (2006) Bacterial RNase P: a new view of an ancient enzyme. Nat Rev Microbiol 4: 729–740.
77. KeilerKC (2007) Physiology of tmRNA: what gets tagged and why? Curr Opin Microbiol 10: 169–175.
78. FranklundCV, KadnerRJ (1997) Multiple transcribed elements control expression of the Escherichia coli btuB gene. J Bacteriol 179: 4039–4042.
79. BonnerER, D'EliaJN, BillipsBK, SwitzerRL (2001) Molecular recognition of pyr mRNA by the Bacillus subtilis attenuation regulatory protein PyrR. Nucleic Acids Res 29: 4851–4865.
80. RenSX, FuG, JiangXG, ZengR, MiaoYG, et al. (2003) Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature 422: 888–893.
81. MatsuiM, RouleauV, Bruyere-OstellsL, GoarantC (2011) Gene expression profiles of immune mediators and histopathological findings in animal models of leptospirosis: comparison between susceptible hamsters and resistant mice. Infect Immun 79: 4480–4492.
82. MonahanAM, CallananJJ, NallyJE (2009) Review paper: Host-pathogen interactions in the kidney during chronic leptospirosis. Vet Pathol 46: 792–799.
83. XueF, DongH, WuJ, WuZ, HuW, et al. (2010) Transcriptional responses of Leptospira interrogans to host innate immunity: significant changes in metabolism, oxygen tolerance, and outer membrane. PLoS Negl Trop Dis 4: e857.
84. TaalMW, ChertowGM, MarsdenPA, SkoreckiK, UYuASL, et al. (2012) Brenner and Rector's The Kidney: Elsevier Mosby Saunders.
85. GrimmD, EggersCH, CaimanoMJ, TillyK, StewartPE, et al. (2004) Experimental assessment of the roles of linear plasmids lp25 and lp28-1 of Borrelia burgdorferi throughout the infectious cycle. Infection and Immunity 72: 5938–5946.
86. SmytheL, AdlerB, HartskeerlRA, GallowayRL, TurenneCY, et al. (2013) Classification of Leptospira genomospecies 1, 3, 4 and 5 as Leptospira alstonii sp. nov., Leptospira vanthielii sp. nov., Leptospira terpstrae sp. nov. and Leptospira yanagawae sp. nov., respectively. Int J Syst Evol Microbiol 63: 1859–1862.
87. FraserCM, CasjensS, HuangWM, SuttonGG, ClaytonR, et al. (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390: 580–586.
88. FraserCM, NorrisSJ, WeinstockGM, WhiteO, SuttonGG, et al. (1998) Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281: 375–388.
89. MurrayGL, SrikramA, HenryR, PuapairojA, SermswanRW, et al. (2009) Leptospira interrogans requires heme oxygenase for disease pathogenesis. Microbes Infect 11: 311–314.
90. KumarS, BandyopadhyayU (2005) Free heme toxicity and its detoxification systems in human. Toxicol Lett 157: 175–188.
91. TongY, GuoM (2009) Bacterial heme-transport proteins and their heme-coordination modes. Arch Biochem Biophys 481: 1–15.
92. LoteCJ (2012) Principles of Renal Physiology: Springer.
93. StoneMJ, WatermanMR, HarimotoD, MurrayG, WillsonN, et al. (1977) Serum myoglobin level as diagnostic test in patients with acute myocardial infarction. Br Heart J 39: 375–380.
94. RepoilaF, DarfeuilleF (2009) Small regulatory non-coding RNAs in bacteria: physiology and mechanistic aspects. Biol Cell 101: 117–131.
95. AltuviaS (2007) Identification of bacterial small non-coding RNAs: experimental approaches. Curr Opin Microbiol 10: 257–261.
96. StorzG, VogelJ, WassarmanKM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43: 880–891.
97. WatersLS, StorzG (2009) Regulatory RNAs in bacteria. Cell 136: 615–628.
98. SchauerK, RodionovDA, de ReuseH (2008) New substrates for TonB-dependent transport: do we only see the ‘tip of the iceberg’? Trends Biochem Sci 33: 330–338.
99. ChaoY, PapenfortK, ReinhardtR, SharmaCM, VogelJ (2012) An atlas of Hfq-bound transcripts reveals 3′ UTRs as a genomic reservoir of regulatory small RNAs. EMBO J 31: 4005–4019.
100. ÖsterbergS, Peso-SantosTd, ShinglerV (2011) Regulation of alternative sigma factor use. Annual Review of Microbiology 65: 37–55.
101. CapraEJ, LaubMT (2012) Evolution of two-component signal transduction systems. Annual Review of Microbiology 66: 325–347.
102. HenggeR (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Micro 7: 263–273.
103. CrodaJ, FigueiraCP, WunderEAJr, SantosCS, ReisMG, et al. (2008) Targeted mutagenesis in pathogenic Leptospira species: disruption of the LigB gene does not affect virulence in animal models of leptospirosis. Infect Immun 76: 5826–5833.
104. MurrayGL, MorelV, CerqueiraGM, CrodaJ, SrikramA, et al. (2009) Genome-wide transposon mutagenesis in pathogenic Leptospira species. Infect Immun 77: 810–816.
105. BourhyP, LouvelH, Saint GironsI, PicardeauM (2005) Random insertional mutagenesis of Leptospira interrogans, the agent of leptospirosis, using a mariner transposon. J Bacteriol 187: 3255–3258.
106. RistowP, BourhyP, da Cruz McBrideFW, FigueiraCP, HuerreM, et al. (2007) The OmpA-like protein Loa22 is essential for leptospiral virulence. PLoS Pathog 3: e97.
107. JohnsonRC, WalbyJ, HenryRA, AuranNE (1973) Cultivation of parasitic leptospires: effect of pyruvate. Appl Microbiol 26: 118–119.
108. MulayVB, CaimanoMJ, IyerR, Dunham-EmsS, LiverisD, et al. (2009) Borrelia burgdorferi bba74 is expressed exclusively during tick feeding and is regulated by both arthropod- and mammalian host-specific signals. Journal of Bacteriology 191: 2783–2794.
109. HoffmannS, OttoC, KurtzS, SharmaCM, KhaitovichP, et al. (2009) Fast Mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput Biol 5: e1000502.
110. KrogerC, DillonSC, CameronAD, PapenfortK, SivasankaranSK, et al. (2012) The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium. Proc Natl Acad Sci U S A 109: E1277–1286.
111. NicolJW, HeltGA, BlanchardSGJr, RajaA, LoraineAE (2009) The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics 25: 2730–2731.
112. PearsonWR (2000) Flexible sequence similarity searching with the FASTA3 program package. Methods Mol Biol 132: 185–219.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 3
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Cytomegalovirus m154 Hinders CD48 Cell-Surface Expression and Promotes Viral Escape from Host Natural Killer Cell Control
- Human African Trypanosomiasis and Immunological Memory: Effect on Phenotypic Lymphocyte Profiles and Humoral Immunity
- Conflicting Interests in the Pathogen–Host Tug of War: Fungal Micronutrient Scavenging Versus Mammalian Nutritional Immunity
- DHX36 Enhances RIG-I Signaling by Facilitating PKR-Mediated Antiviral Stress Granule Formation