#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Viral OTU Deubiquitinases: A Structural and Functional Comparison


Recent studies have revealed that proteases encoded by three very diverse RNA virus groups share structural similarity with enzymes of the Ovarian Tumor (OTU) superfamily of deubiquitinases (DUBs). The publication of the latest of these reports in quick succession prevented proper recognition and discussion of the shared features of these viral enzymes. Here we provide a brief structural and functional comparison of these virus-encoded OTU DUBs. Interestingly, although their shared structural features and substrate specificity tentatively place them within the same protease superfamily, they also show interesting differences that trigger speculation as to their origins.


Vyšlo v časopise: Viral OTU Deubiquitinases: A Structural and Functional Comparison. PLoS Pathog 10(3): e32767. doi:10.1371/journal.ppat.1003894
Kategorie: Opinion
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003894

Souhrn

Recent studies have revealed that proteases encoded by three very diverse RNA virus groups share structural similarity with enzymes of the Ovarian Tumor (OTU) superfamily of deubiquitinases (DUBs). The publication of the latest of these reports in quick succession prevented proper recognition and discussion of the shared features of these viral enzymes. Here we provide a brief structural and functional comparison of these virus-encoded OTU DUBs. Interestingly, although their shared structural features and substrate specificity tentatively place them within the same protease superfamily, they also show interesting differences that trigger speculation as to their origins.


Zdroje

1. KomanderD, RapeM (2012) The ubiquitin code. Annu Rev Biochem 81: 203–229.

2. ClagueMJ, UrbeS (2010) Ubiquitin: same molecule, different degradation pathways. Cell 143: 682–685.

3. JiangX, ChenZJ (2012) The role of ubiquitylation in immune defence and pathogen evasion. Nat Rev Immunol 12: 35–48.

4. OudshoornD, VersteegGA, KikkertM (2012) Regulation of the innate immune system by ubiquitin and ubiquitin-like modifiers. Cytokine Growth Factor Rev 23: 273–282.

5. HuangTT, D'AndreaAD (2006) Regulation of DNA repair by ubiquitylation. Nat Rev Mol Cell Biol 7: 323–334.

6. NijmanSM, Luna-VargasMP, VeldsA, BrummelkampTR, DiracAM, et al. (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123: 773–786.

7. Frias-StaheliN, GiannakopoulosNV, KikkertM, TaylorSL, BridgenA, et al. (2007) Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe 2: 404–416.

8. van KasterenPB, BeugelingC, NinaberDK, Frias-StaheliN, van BoheemenS, et al. (2012) Arterivirus and Nairovirus Ovarian Tumor Domain-Containing Deubiquitinases Target Activated RIG-I To Control Innate Immune Signaling. J Virol 86: 773–785.

9. SunZ, ChenZ, LawsonSR, FangY (2010) The cysteine protease domain of porcine reproductive and respiratory syndrome virus nonstructural protein 2 possesses deubiquitinating and interferon antagonism functions. J Virol 84: 7832–7846.

10. ChenonM, CambordeL, CheminantS, JupinI (2012) A viral deubiquitylating enzyme targets viral RNA-dependent RNA polymerase and affects viral infectivity. EMBO J 31: 741–753.

11. ChenZ, WangY, RatiaK, MesecarAD, WilkinsonKD, et al. (2007) Proteolytic processing and deubiquitinating activity of papain-like proteases of human coronavirus NL63. J Virol 81: 6007–6018.

12. ZhengD, ChenG, GuoB, ChengG, TangH (2008) PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production. Cell Res 18: 1105–1113.

13. ClementzMA, ChenZ, BanachBS, WangY, SunL, et al. (2010) Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. J Virol 84: 4619–4629.

14. WangD, FangL, LiP, SunL, FanJ, et al. (2011) The leader proteinase of foot-and-mouth disease virus negatively regulates the type I interferon pathway by acting as a viral deubiquitinase. J Virol 85: 3758–3766.

15. KattenhornLM, KorbelGA, KesslerBM, SpoonerE, PloeghHL (2005) A deubiquitinating enzyme encoded by HSV-1 belongs to a family of cysteine proteases that is conserved across the family Herpesviridae. Mol Cell 19: 547–557.

16. WangJ, LovelandAN, KattenhornLM, PloeghHL, GibsonW (2006) High-molecular-weight protein (pUL48) of human cytomegalovirus is a competent deubiquitinating protease: mutant viruses altered in its active-site cysteine or histidine are viable. J Virol 80: 6003–6012.

17. BottcherS, MareschC, GranzowH, KluppBG, TeifkeJP, et al. (2008) Mutagenesis of the active-site cysteine in the ubiquitin-specific protease contained in large tegument protein pUL36 of pseudorabies virus impairs viral replication in vitro and neuroinvasion in vivo. J Virol 82: 6009–6016.

18. SompallaeR, GastaldelloS, HildebrandS, ZininN, HassinkG, et al. (2008) Epstein-barr virus encodes three bona fide ubiquitin-specific proteases. J Virol 82: 10477–10486.

19. GonzalezCM, WangL, DamaniaB (2009) Kaposi's sarcoma-associated herpesvirus encodes a viral deubiquitinase. J Virol 83: 10224–10233.

20. WhitehurstCB, VaziriC, ShackelfordJ, PaganoJS (2012) Epstein-Barr virus BPLF1 deubiquitinates PCNA and attenuates polymerase eta recruitment to DNA damage sites. J Virol 86: 8097–8106.

21. JiangJ, TangH (2010) Mechanism of inhibiting type I interferon induction by hepatitis B virus X protein. Protein Cell 1: 1106–1117.

22. AkutsuM, YeY, VirdeeS, ChinJW, KomanderD (2011) Molecular basis for ubiquitin and ISG15 cross-reactivity in viral ovarian tumor domains. Proc Natl Acad Sci U S A 108: 2228–2233.

23. JamesTW, Frias-StaheliN, BacikJP, Levingston MacleodJM, KhajehpourM, et al. (2011) Structural basis for the removal of ubiquitin and interferon-stimulated gene 15 by a viral ovarian tumor domain-containing protease. Proc Natl Acad Sci U S A 108: 2222–2227.

24. CapodagliGC, McKercherMA, BakerEA, MastersEM, BrunzelleJS, et al. (2011) Structural analysis of a viral ovarian tumor domain protease from the Crimean-Congo hemorrhagic fever virus in complex with covalently bonded ubiquitin. J Virol 85: 3621–3630.

25. CapodagliGC, DeatonMK, BakerEA, LumpkinRJ, PeganSD (2013) Diversity of ubiquitin and ISG15 specificity among nairoviruses' viral ovarian tumor domain proteases. J Virol 87: 3815–3827.

26. van KasterenPB, Bailey-ElkinBA, JamesTW, NinaberDK, BeugelingC, et al. (2013) Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells. Proc Natl Acad Sci U S A 110: E838–847.

27. RobinC, BeaurepaireL, ChenonM, JupinI, BressanelliS (2012) In praise of impurity: 30S ribosomal S15 protein-assisted crystallization of turnip yellow mosaic virus proteinase. Acta Crystallogr Sect F Struct Biol Cryst Commun 68: 486–490.

28. LombardiC, AyachM, BeaurepaireL, ChenonM, AndreaniJ, et al. (2013) A Compact Viral Processing Proteinase/Ubiquitin Hydrolase from the OTU Family. PLOS Pathog 9: e1003560.

29. MakarovaKS, AravindL, KooninEV (2000) A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends Biochem Sci 25: 50–52.

30. WertzIE, O'RourkeKM, ZhouH, EbyM, AravindL, et al. (2004) De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430: 694–699.

31. KayagakiN, PhungQ, ChanS, ChaudhariR, QuanC, et al. (2007) DUBA: a deubiquitinase that regulates type I interferon production. Science 318: 1628–1632.

32. EnesaK, ZakkarM, ChaudhuryH, Luong leA, RawlinsonL, et al. (2008) NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 283: 7036–7045.

33. LiS, ZhengH, MaoAP, ZhongB, LiY, et al. (2010) Regulation of virus-triggered signaling by OTUB1- and OTUB2-mediated deubiquitination of TRAF3 and TRAF6. J Biol Chem 285: 4291–4297.

34. HolzerB, BakshiS, BridgenA, BaronMD (2011) Inhibition of interferon induction and action by the nairovirus Nairobi sheep disease virus/Ganjam virus. PLOS One 6: e28594.

35. BakshiS, HolzerB, BridgenA, McMullanG, QuinnDG, et al. (2013) Dugbe virus ovarian tumour domain interferes with ubiquitin/ISG15-regulated innate immune cell signalling. J Gen Virol 94: 298–307.

36. SunZ, LiY, RansburghR, SnijderEJ, FangY (2012) Nonstructural protein 2 of porcine reproductive and respiratory syndrome virus inhibits the antiviral function of interferon-stimulated gene 15. J Virol 86: 3839–3850.

37. SkaugB, ChenZJ (2010) Emerging role of ISG15 in antiviral immunity. Cell 143: 187–190.

38. BarrettoN, JuknelieneD, RatiaK, ChenZ, MesecarAD, et al. (2005) The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J Virol 79: 15189–15198.

39. LindnerHA, Fotouhi-ArdakaniN, LytvynV, LachanceP, SuleaT, et al. (2005) The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J Virol 79: 15199–15208.

40. DevarajSG, WangN, ChenZ, TsengM, BarrettoN, et al. (2007) Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J Biol Chem 282: 32208–32221.

41. WangG, ChenG, ZhengD, ChengG, TangH (2011) PLP2 of mouse hepatitis virus A59 (MHV-A59) targets TBK1 to negatively regulate cellular type I interferon signaling pathway. PLOS One 6: e17192.

42. SunL, XingY, ChenX, ZhengY, YangY, et al. (2012) Coronavirus Papain-like Proteases Negatively Regulate Antiviral Innate Immune Response through Disruption of STING-Mediated Signaling. PLOS One 7: e30802.

43. RatiaK, SaikatenduKS, SantarsieroBD, BarrettoN, BakerSC, et al. (2006) Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc Natl Acad Sci U S A 103: 5717–5722.

44. WojdylaJA, ManolaridisI, van KasterenPB, KikkertM, SnijderEJ, et al. (2010) Papain-like protease 1 from transmissible gastroenteritis virus: crystal structure and enzymatic activity toward viral and cellular substrates. J Virol 84: 10063–10073.

45. CambordeL, PlanchaisS, TournierV, JakubiecA, DrugeonG, et al. (2010) The ubiquitin-proteasome system regulates the accumulation of Turnip yellow mosaic virus RNA-dependent RNA polymerase during viral infection. Plant Cell 22: 3142–3152.

46. MevissenTE, HospenthalMK, GeurinkPP, ElliottPR, AkutsuM, et al. (2013) OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 154: 169–184.

47. HellenCU, KrausslichHG, WimmerE (1989) Proteolytic processing of polyproteins in the replication of RNA viruses. Biochemistry 28: 9881–9890.

48. BergeronE, AlbarinoCG, KhristovaML, NicholST (2010) Crimean-Congo hemorrhagic fever virus-encoded ovarian tumor protease activity is dispensable for virus RNA polymerase function. J Virol 84: 216–226.

49. BransomKL, WeilandJJ, DreherTW (1991) Proteolytic maturation of the 206-kDa nonstructural protein encoded by turnip yellow mosaic virus RNA. Virology 184: 351–358.

50. JakubiecA, DrugeonG, CambordeL, JupinI (2007) Proteolytic processing of turnip yellow mosaic virus replication proteins and functional impact on infectivity. J Virol 81: 11402–11412.

51. SnijderEJ, WassenaarAL, SpaanWJ, GorbalenyaAE (1995) The arterivirus Nsp2 protease. An unusual cysteine protease with primary structure similarities to both papain-like and chymotrypsin-like proteases. J Biol Chem 270: 16671–16676.

52. WassenaarAL, SpaanWJ, GorbalenyaAE, SnijderEJ (1997) Alternative proteolytic processing of the arterivirus replicase ORF1a polyprotein: evidence that NSP2 acts as a cofactor for the NSP4 serine protease. J Virol 71: 9313–9322.

53. PosthumaCC, PedersenKW, LuZ, JoostenRG, RoosN, et al. (2008) Formation of the arterivirus replication/transcription complex: a key role for nonstructural protein 3 in the remodeling of intracellular membranes. J Virol 82: 4480–4491.

54. ZiebuhrJ, SnijderEJ, GorbalenyaAE (2000) Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81: 853–879.

55. BransomKL, DreherTW (1994) Identification of the essential cysteine and histidine residues of the turnip yellow mosaic virus protease. Virology 198: 148–154.

56. HolmL, RosenströmP (2010) Dali server: conservation mapping in 3D. Nucleic Acids Research 38: W545–W549.

57. MessickTE, RussellNS, IwataAJ, SarachanKL, ShiekhattarR, et al. (2008) Structural basis for ubiquitin recognition by the Otu1 ovarian tumor domain protein. J Biol Chem 283: 11038–11049.

58. MartelliGP, AdamsMJ, KreuzeJF, DoljaVV (2007) Family Flexiviridae: a case study in virion and genome plasticity. Annu Rev Phytopathol 45: 73–100.

59. HolmL, KaariainenS, RosenstromP, SchenkelA (2008) Searching protein structure databases with DaliLite v.3. Bioinformatics 24: 2780–2781.

60. DeLano WL (2002) The PyMOL Molecular Graphics System. Palo Alto, CA, USA.: DeLano Scientific.

61. KinsellaE, MartinSG, GrollaA, CzubM, FeldmannH, et al. (2004) Sequence determination of the Crimean-Congo hemorrhagic fever virus L segment. Virology 321: 23–28.

62. HonigJE, OsborneJC, NicholST (2004) Crimean-Congo hemorrhagic fever virus genome L RNA segment and encoded protein. Virology 321: 29–35.

63. SnijderEJ, KikkertM, FangY (2013) Arterivirus molecular biology and pathogenesis. J Gen Virol 94: 2141–2163.

64. KrissinelE, HenrickK (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 60: 2256–2268.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#