In Vivo Administration of a JAK3 Inhibitor during Acute SIV Infection Leads to Significant Increases in Viral Load during Chronic Infection
In efforts to define the potential role of innate immune effector mechanisms in influencing the course of SIV infection during the acute infection period, our lab utilized the in vivo daily administration of 20 mg/kg orally of a compound called Tofacitinib (a Janus kinase 3 inhibitor) to a group of 15 rhesus macaques starting at day −6 and until day 28 post intravenous SIVmac239 infection. An additional group of 16 similarly SIV infected rhesus macaques served as a placebo control. This drug targets the JAK/STAT pathway that is utilized by cells including the NK cell lineage, a major cell of the innate immune system. The dosage utilized was based on extensive previous PK studies that resulted in a marked depletion of the NK cells. Of interest while such drug administration had no effect on plasma viral loads during acute infection, such drug administration led to significant increases in plasma and gastro-intestinal tissues (GIT) viral loads during chronic infection. A series of phenotypic/functional studies were performed to determine the mechanisms for this delayed effect and the correlates identified. These data are the first to document the effect of JAK-3 inhibitor during acute SIV infection with implications for HIV vaccine design.
Vyšlo v časopise:
In Vivo Administration of a JAK3 Inhibitor during Acute SIV Infection Leads to Significant Increases in Viral Load during Chronic Infection. PLoS Pathog 10(3): e32767. doi:10.1371/journal.ppat.1003929
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003929
Souhrn
In efforts to define the potential role of innate immune effector mechanisms in influencing the course of SIV infection during the acute infection period, our lab utilized the in vivo daily administration of 20 mg/kg orally of a compound called Tofacitinib (a Janus kinase 3 inhibitor) to a group of 15 rhesus macaques starting at day −6 and until day 28 post intravenous SIVmac239 infection. An additional group of 16 similarly SIV infected rhesus macaques served as a placebo control. This drug targets the JAK/STAT pathway that is utilized by cells including the NK cell lineage, a major cell of the innate immune system. The dosage utilized was based on extensive previous PK studies that resulted in a marked depletion of the NK cells. Of interest while such drug administration had no effect on plasma viral loads during acute infection, such drug administration led to significant increases in plasma and gastro-intestinal tissues (GIT) viral loads during chronic infection. A series of phenotypic/functional studies were performed to determine the mechanisms for this delayed effect and the correlates identified. These data are the first to document the effect of JAK-3 inhibitor during acute SIV infection with implications for HIV vaccine design.
Zdroje
1. AnsariAA, MayneAE, TakahashiY, PattanapanyasatK (2011) Incorporation of innate immune effector mechanisms in the formulation of a vaccine against HIV-1. Adv Exp Med Biol 780: 143–159.
2. CaligiuriMA (2008) Human natural killer cells. Blood 112: 461–469.
3. HaaseAT (2010) Targeting early infection to prevent HIV-1 mucosal transmission. Nature 464: 217–223.
4. AlterG, AltfeldM (2011) Mutiny or scrutiny: NK cell modulation of DC function in HIV-1 infection. Trends Immunol 32: 219–224 doi: 210.1016/j.it.2011.1002.1003. Epub 2011 Mar 1014
5. BorrowP, AlterG, AltfeldM (2011) Innate immunity in acute HIV-1 infection. Curr Opin HIV AIDS 6: 353–363.
6. WelshRM, WaggonerSN, BorrowP, AlterG, AltfeldM (2013) NK cells controlling virus-specific T cells: Rheostats for acute vs. persistent infections. Virology 435: 37–45.
7. BezmanNA, ChakrabortyT, BenderT, LanierLL (2011) miR-150 regulates the development of NK and iNKT cells. J Exp Med 208: 2717–2731.
8. CupedoT, CrellinNK, PapazianN, RomboutsEJ, WeijerK, et al. (2009) Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat Immunol 10: 66–74.
9. EissensDN, SpanholtzJ, van der MeerA, van CranenbroekB, DolstraH, et al. (2012) Defining early human NK cell developmental stages in primary and secondary lymphoid tissues. PLoS One 7: e30930.
10. FreudAG, YokohamaA, BecknellB, LeeMT, MaoHC, et al. (2006) Evidence for discrete stages of human natural killer cell differentiation in vivo. J Exp Med 203: 1033–1043.
11. GregoireC, ChassonL, LuciC, TomaselloE, GeissmannF, et al. (2007) The trafficking of natural killer cells. Immunol Rev 220: 169–182.
12. HaraguchiK, SuzukiT, KoyamaN, KumanoK, NakaharaF, et al. (2009) Notch activation induces the generation of functional NK cells from human cord blood CD34-positive cells devoid of IL-15. J Immunol 182: 6168–6178.
13. HuntingtonND, LegrandN, AlvesNL, JaronB, WeijerK, et al. (2009) IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med 206: 25–34.
14. KamizonoS, DuncanGS, SeidelMG, MorimotoA, HamadaK, et al. (2009) Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J Exp Med 206: 2977–2986.
15. LiN, Puga YungGL, PradierA, TosoC, GiostraE, et al. (2013) NK cell isolation from liver biopsies: phenotypic and functional analysis of low cell numbers by flow cytometry. Front Immunol 4: 61.
16. PereiraLE, JohnsonRP, AnsariAA (2008) Sooty mangabeys and rhesus macaques exhibit significant divergent natural killer cell responses during both acute and chronic phases of SIV infection. Cell Immunol 254: 10–19.
17. ReevesRK, RajakumarPA, EvansTI, ConnoleM, GillisJ, et al. (2011) Gut inflammation and indoleamine deoxygenase inhibit IL-17 production and promote cytotoxic potential in NKp44+ mucosal NK cells during SIV infection. Blood 118: 3321–3330.
18. SunJC, LanierLL (2011) NK cell development, homeostasis and function: parallels with CD8(+) T cells. Nat Rev Immunol 11: 645–657.
19. VargasCL, Poursine-LaurentJ, YangL, YokoyamaWM (2011) Development of thymic NK cells from double negative 1 thymocyte precursors. Blood 118: 3570–3578.
20. KruegerPD, LassenMG, QiaoH, HahnYS (2011) Regulation of NK cell repertoire and function in the liver. Crit Rev Immunol 31: 43–52.
21. PaustS, GillHS, WangBZ, FlynnMP, MosemanEA, et al. (2010) Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat Immunol 11: 1127–1135.
22. XuH, WangX, LiuDX, Moroney-RasmussenT, LacknerAA, et al. (2012) IL-17-producing innate lymphoid cells are restricted to mucosal tissues and are depleted in SIV-infected macaques. Mucosal Immunol 5: 658–669.
23. CooperMA, YokoyamaWM (2010) Memory-like responses of natural killer cells. Immunol Rev 235: 297–305.
24. DenizG, ErtenG, KucuksezerUC, KocacikD, KaragiannidisC, et al. (2008) Regulatory NK cells suppress antigen-specific T cell responses. J Immunol 180: 850–857.
25. EhlersM, PapewalisC, StenzelW, JacobsB, MeyerKL, et al. (2012) Immunoregulatory natural killer cells suppress autoimmunity by down-regulating antigen-specific CD8+ T cells in mice. Endocrinology 153: 4367–4379.
26. FauriatC, LongEO, LjunggrenHG, BrycesonYT (2010) Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood 115: 2167–2176.
27. FuB, LiX, SunR, TongX, LingB, et al. (2013) Natural killer cells promote immune tolerance by regulating inflammatory TH17 cells at the human maternal-fetal interface. Proc Natl Acad Sci U S A 110: E231–240.
28. GeMQ, HoAW, TangY, WongKH, ChuaBY, et al. (2012) NK cells regulate CD8+ T cell priming and dendritic cell migration during influenza A infection by IFN-gamma and perforin-dependent mechanisms. J Immunol 189: 2099–2109.
29. JewettA, ManYG, TsengHC (2013) Dual functions of natural killer cells in selection and differentiation of stem cells; role in regulation of inflammation and regeneration of tissues. J Cancer 4: 12–24.
30. LangPA, LangKS, XuHC, GrusdatM, ParishIA, et al. (2012) Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity. Proc Natl Acad Sci U S A 109: 1210–1215.
31. PaustS, von AndrianUH (2011) Natural killer cell memory. Nat Immunol 12: 500–508.
32. RomeeR, SchneiderSE, LeongJW, ChaseJM, KeppelCR, et al. (2012) Cytokine activation induces human memory-like NK cells. Blood 120: 4751–4760.
33. StrowigT, BrilotF, MunzC (2008) Noncytotoxic functions of NK cells: direct pathogen restriction and assistance to adaptive immunity. J Immunol 180: 7785–7791.
34. WaggonerSN, CornbergM, SelinLK, WelshRM (2012) Natural killer cells act as rheostats modulating antiviral T cells. Nature 481: 394–398.
35. ZhangT, ScottJM, HwangI, KimS (2013) Cutting Edge: Antibody-Dependent Memory-like NK Cells Distinguished by FcRgamma Deficiency. J Immunol 190: 1402–1406.
36. ElliottJM, YokoyamaWM (2011) Unifying concepts of MHC-dependent natural killer cell education. Trends Immunol 32: 364–372.
37. HosoyaS, IkejimaK, TakedaK, AraiK, IshikawaS, et al. (2013) Innate immune responses involving natural killer and natural killer T cells promote liver regeneration after partial hepatectomy in mice. Am J Physiol Gastrointest Liver Physiol 304: G293–299.
38. JonssonAH, YokoyamaWM (2009) Natural killer cell tolerance licensing and other mechanisms. Adv Immunol 101: 27–79.
39. KimS, Poursine-LaurentJ, TruscottSM, LybargerL, SongYJ, et al. (2005) Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436: 709–713.
40. KumarP, RajasekaranK, PalmerJM, ThakarMS, MalarkannanS (2013) IL-22: An Evolutionary Missing-Link Authenticating the Role of the Immune System in Tissue Regeneration. J Cancer 4: 57–65.
41. MaceEM, OrangeJS (2012) New views of the human NK cell immunological synapse: recent advances enabled by super- and high-resolution imaging techniques. Front Immunol 3: 421.
42. MurphyWJ, ParhamP, MillerJS (2012) NK cells–from bench to clinic. Biol Blood Marrow Transplant 18: S2–7.
43. VivierE, RauletDH, MorettaA, CaligiuriMA, ZitvogelL, et al. (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331: 44–49.
44. TakahashiY, MayneAE, KhowawisetsutL, PattanapanyasatK, LittleD, et al. (2013) In Vivo Administration of a JAK3 Inhibitor to Chronically SIV Infected Rhesus Macaques Leads to NK Cell Depletion Associated with Transient Modest Increase in Viral Loads. PLoS One 8: e70992 doi: 70910.71371/journal.pone.0070992. Print 0072013
45. PaniaguaR, SiMS, FloresMG, RousvoalG, ZhangS, et al. (2005) Effects of JAK3 inhibition with CP-690,550 on immune cell populations and their functions in nonhuman primate recipients of kidney allografts. Transplantation 80: 1283–1292.
46. ChangelianPS, MoshinskyD, KuhnCF, FlanaganME, MunchhofMJ, et al. (2008) The specificity of JAK3 kinase inhibitors. Blood 111: 2155–2157 Epub 2007 Dec 2119.
47. KiuH, NicholsonSE (2012) Biology and significance of the JAK/STAT signalling pathways. Growth Factors 30: 88–106 doi: 110.3109/08977194.08972012.08660936. Epub 08972012 Feb 08977120
48. O'SheaJJ, PlengeR (2012) JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 36: 542–550.
49. SimmonsDL (2013) Targeting kinases: a new approach to treating inflammatory rheumatic diseases. Curr Opin Pharmacol 13: 426–434 doi: 410.1016/j.coph.2013.1002.1008. Epub 2013 Mar 1019
50. SothM, HermannJC, YeeC, AlamM, BarnettJW, et al. (2013) 3-Amido pyrrolopyrazine JAK kinase inhibitors: development of a JAK3 vs JAK1 selective inhibitor and evaluation in cellular and in vivo models. J Med Chem 56: 345–356 doi: 310.1021/jm301646k. Epub 302012 Dec 301619
51. AllenPB, Peyrin-BirouletL (2013) Moving towards disease modification in inflammatory bowel disease therapy. Curr Opin Gastroenterol 29: 397–404 doi: 310.1097/MOG.1090b1013e3283622914
52. CottoneM, OrlandoA, PapiC (2012) Tofacitinib in active ulcerative colitis. N Engl J Med 367: 1960 author reply 1960–1961. doi: #1910.1056/NEJMc1211073#SA1211072
53. GarberK (2013) Pfizer's first-in-class JAK inhibitor pricey for rheumatoid arthritis market. Nat Biotechnol 31: 3–4 doi: 10.1038/nbt0113-1033
54. GremeseE, FerraccioliG (2013) Tofacitinib for rheumatoid arthritis. Lancet 381: 1812 doi: 1810.1016/S0140-6736(1813)61114-61119
55. AnsariAA, ReimannKA, MayneAE, TakahashiY, StephensonST, et al. (2011) Blocking of alpha4beta7 gut-homing integrin during acute infection leads to decreased plasma and gastrointestinal tissue viral loads in simian immunodeficiency virus-infected rhesus macaques. J Immunol 186: 1044–1059.
56. PaniaguaR, CampbellA, ChangelianPS, ReitzBA, PrakashC, et al. (2005) Quantitative analysis of the immunosuppressant CP-690,550 in whole blood by column-switching high-performance liquid chromatography and mass spectrometry detection. Ther Drug Monit 27: 608–616.
57. MorelandAJ, GuethleinLA, ReevesRK, BromanKW, JohnsonRP, et al. (2011) Characterization of killer immunoglobulin-like receptor genetics and comprehensive genotyping by pyrosequencing in rhesus macaques. BMC Genomics 12:295 10.1186/1471-2164-1112-1295.
58. O'LearyCE, WisemanRW, KarlJA, BimberBN, LankSM, et al. (2009) Identification of novel MHC class I sequences in pig-tailed macaques by amplicon pyrosequencing and full-length cDNA cloning and sequencing. Immunogenetics 61: 689–701 doi: 610.1007/s00251-00009-00397-00254. Epub 02009 Sep 00224
59. BixbyJG, LaurO, JohnsonWE, DesrosiersRC (2010) Diversity of envelope genes from an uncloned stock of SIVmac251. AIDS Res Hum Retroviruses 26: 1115–1131 doi: 1110.1089/aid.2010.0029. Epub 2010 Sep 1113
60. AlpertMD, HeyerLN, WilliamsDE, HarveyJD, GreenoughT, et al. (2012) A novel assay for antibody-dependent cell-mediated cytotoxicity against HIV-1- or SIV-infected cells reveals incomplete overlap with antibodies measured by neutralization and binding assays. J Virol 86: 12039–12052 doi: 12010.11128/JVI.01650-12012. Epub 12012 Aug 12029
61. KottililS, JacksonJO, ReitanoKN, O'SheaMA, RobyG, et al. (2007) Innate immunity in HIV infection: enhanced susceptibility to CD95-mediated natural killer cell death and turnover induced by HIV viremia. J Acquir Immune Defic Syndr 46: 151–159.
62. KhowawisetsutL, PattanapanyasatK, OnlamoonN, MayneAE, LittleDM, et al. (2013) Relationships between IL-17+ subsets, Tregs and pDCs that distinguish among SIV infected elite controllers, low, medium and high viral load rhesus macaques1. PlosOne 8 (7)e70992.
63. KwaS, KannanganatS, NigamP, SiddiquiM, ShettyRD, et al. (2011) Plasmacytoid dendritic cells are recruited to the colorectum and contribute to immune activation during pathogenic SIV infection in rhesus macaques. Blood 118: 2763–2773 doi: 2710.1182/blood-2011-2702-339515. Epub 332011 Jun 339521
64. ReevesRK, EvansTI, GillisJ, WongFE, KangG, et al. (2012) SIV infection induces accumulation of plasmacytoid dendritic cells in the gut mucosa. J Infect Dis 206: 1462–1468 doi: 1410.1093/infdis/jis1408. Epub 2012 Jun 1418
65. FunkeJ, DurrR, DietrichU, KochJ (2011) Natural killer cells in HIV-1 infection: a double-edged sword. AIDS Rev 13: 67–76.
66. JostS, AltfeldM (2013) Control of Human Viral Infections by Natural Killer Cells. Annu Rev Immunol 31: 163–94.
67. KottililS, ShinK, JacksonJO, ReitanoKN, O'SheaMA, et al. (2006) Innate immune dysfunction in HIV infection: effect of HIV envelope-NK cell interactions. J Immunol 176: 1107–1114.
68. PallikkuthS, ParmigianiA, PahwaS (2012) Role of IL-21 and IL-21 receptor on B cells in HIV infection. Crit Rev Immunol 32: 173–195.
69. BorieDC, O'SheaJJ, ChangelianPS (2004) JAK3 inhibition, a viable new modality of immunosuppression for solid organ transplants. Trends Mol Med 10: 532–541.
70. KaramanMW, HerrgardS, TreiberDK, GallantP, AtteridgeCE, et al. (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26: 127–132 doi: 110.1038/nbt1358
71. GhoreschiK, JessonMI, LiX, LeeJL, GhoshS, et al. (2011) Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol 186: 4234–4243 doi: 4210.4049/jimmunol.1003668. Epub 1002011 Mar 1003667
72. NosakaT, van DeursenJM, TrippRA, ThierfelderWE, WitthuhnBA, et al. (1995) Defective lymphoid development in mice lacking Jak3. Science 270: 800–802.
73. O'SheaJJ, HusaM, LiD, HofmannSR, WatfordW, et al. (2004) Jak3 and the pathogenesis of severe combined immunodeficiency. Mol Immunol 41: 727–737.
74. O'SheaJJ, KontziasA, YamaokaK, TanakaY, LaurenceA (2013) Janus kinase inhibitors in autoimmune diseases. Ann Rheum Dis 72: ii111–115 doi: 110.1136/annrheumdis-2012-202576
75. YoshidaH, KimuraA, FukayaT, SekiyaT, MoritaR, et al. (2012) Low dose CP-690,550 (tofacitinib), a pan-JAK inhibitor, accelerates the onset of experimental autoimmune encephalomyelitis by potentiating Th17 differentiation. Biochem Biophys Res Commun 418: 234–240 doi: 210.1016/j.bbrc.2011.1012.1156. Epub 2012 Jan 1019
76. FleischmannR (2012) Novel small-molecular therapeutics for rheumatoid arthritis. Curr Opin Rheumatol 24: 335–341 doi: 310.1097/BOR.1090b1013e32835190ef
77. GarberK (2011) Pfizer's JAK inhibitor sails through phase 3 in rheumatoid arthritis. Nat Biotechnol 29: 467–468 doi: 410.1038/nbt0611-1467
78. KontziasA, LaurenceA, GadinaM, O'SheaJJ (2012) Kinase inhibitors in the treatment of immune-mediated disease. 1000 4:5.: 10.3410/M3414-3415. Epub 2012 Mar 3411.
79. AhmadA, AhmadR, IannelloA, TomaE, MorissetR, et al. (2005) IL-15 and HIV infection: lessons for immunotherapy and vaccination. Curr HIV Res 3: 261–270.
80. BostikP, TakahashiY, MayneAE, AnsariAA (2010) Innate immune natural killer cells and their role in HIV and SIV infection. HIV Ther 4: 483–504.
81. InngjerdingenM, KvebergL, NaperC, VaageJT (2011) Natural killer cell subsets in man and rodents. Tissue Antigens 78: 81–88 doi: 10.1111/j.1399-0039.2011.01714.x
82. VerbistKC, KlonowskiKD (2012) Functions of IL-15 in anti-viral immunity: multiplicity and variety. Cytokine 59: 467–478 doi: 410.1016/j.cyto.2012.1005.1020. Epub 2012 Jun 1015
83. Degottardi M, Okoye A, Rohinkedkar M, Konfe A, Turner J, et al.. (2012) Understasnding the role of IL-15 in SIV pathogenesis. Nonhuman Primate Meetings. San Antonio, TX.
84. SchmitzJE, JohnsonRP, McClureHM, MansonKH, WyandMS, et al. (2005) Effect of CD8+ lymphocyte depletion on virus containment after simian immunodeficiency virus SIVmac251 challenge of live attenuated SIVmac239delta3-vaccinated rhesus macaques. J Virol 79: 8131–8141.
85. SchmitzJE, KurodaMJ, SantraS, SassevilleVG, SimonMA, et al. (1999) Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283: 857–860.
86. CoskunM, SalemM, PedersenJ, NielsenOH (2013) Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacol Res 76C: 1–8 10.1016/j.phrs.2013.1006.1007.
87. KawalecP, MikrutA, WisniewskaN, PilcA (2013) The effectiveness of tofacitinib, a novel Janus kinase inhibitor, in the treatment of rheumatoid arthritis: a systematic review and meta-analysis. Clin Rheumatol 23: 23.
88. YokoyamaS, PereraPY, WaldmannTA, HiroiT, PereraLP (2013) Tofacitinib, a janus kinase inhibitor demonstrates efficacy in an IL-15 transgenic mouse model that recapitulates pathologic manifestations of celiac disease. J Clin Immunol 33: 586–594 doi: 510.1007/s10875-10012-19849-y. Epub 12012 Dec 10828
89. SandbornWJ, GhoshS, PanesJ, VranicI, SuC, et al. (2012) Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med 367: 616–624 doi: 610.1056/NEJMoa1112168
90. AgaceWW (2008) T-cell recruitment to the intestinal mucosa. Trends Immunol 29: 514–522 doi: 510.1016/j.it.2008.1008.1003
91. CimbroR, VassenaL, ArthosJ, CicalaC, KehrlJH, et al. (2012) IL-7 induces expression and activation of integrin alpha4beta7 promoting naive T-cell homing to the intestinal mucosa. Blood 120: 2610–2619 Epub 2012 Aug 2614.
92. De CalistoJ, VillablancaEJ, WangS, BonoMR, RosemblattM, et al. (2012) T-cell homing to the gut mucosa: general concepts and methodological considerations. Methods Mol Biol 757: 411–34 10.1007/1978-1001-61779-61166-61776_61724.
93. Perez-VillarJJ, ZapataJM, MeleroI, PostigoA, Sanchez-MadridE, et al. (1996) Expression and function of alpha 4/beta 7 integrin on human natural killer cells. Immunology 89: 96–104.
94. JostS, Moreno-NievesUY, Garcia-BeltranWF, RandsK, ReardonJ, et al. (2013) Dysregulated Tim-3 expression on natural killer cells is associated with increased Galectin-9 levels in HIV-1 infection. Retrovirology 10: 74 doi: 10.1186/1742-4690-1110-1174
95. MicciL, CervasiB, EndeZS, IrieleRI, Reyes-AvilesE, et al. (2012) Paucity of IL-21-producing CD4(+) T cells is associated with Th17 cell depletion in SIV infection of rhesus macaques. Blood 120: 3925–3935 doi: 3910.1182/blood-2012-3904-420240. Epub 422012 Sep 420218
96. PaiardiniM, CervasiB, Reyes-AvilesE, MicciL, OrtizAM, et al. (2011) Low levels of SIV infection in sooty mangabey central memory CD(4)(+) T cells are associated with limited CCR5 expression. Nat Med 17: 830–836 doi: 810.1038/nm.2395
97. GorryPR, AncutaP (2011) Coreceptors and HIV-1 pathogenesis. Curr HIV/AIDS Rep 8: 45–53 doi: 10.1007/s11904-11010-10069-x
98. KaderM, WangX, PiatakM, LifsonJ, RoedererM, et al. (2009) Alpha4(+)beta7(hi)CD4(+) memory T cells harbor most Th-17 cells and are preferentially infected during acute SIV infection. Mucosal Immunol 2: 439–449 doi: 410.1038/mi.2009.1090. Epub 2009 Jul 1031
99. MartinelliE, VegliaF, GoodeD, Guerra-PerezN, AravantinouM, et al. (2013) The frequency of alpha4beta7high memory CD4+ T cells correlates with susceptibility to rectal SIV infection. J Acquir Immune Defic Syndr 21: 21.
100. AlpertMD, HarveyJD, LauerWA, ReevesRK, PiatakMJr, et al. (2012) ADCC develops over time during persistent infection with live-attenuated SIV and is associated with complete protection against SIV(mac)251 challenge. PLoS Pathog 8: e1002890 doi: 1002810.1001371/journal.ppat.1002890. Epub 1002012 Aug 1002823
101. BonsignoriM, PollaraJ, MoodyMA, AlpertMD, ChenX, et al. (2012) Antibody-dependent cellular cytotoxicity-mediating antibodies from an HIV-1 vaccine efficacy trial target multiple epitopes and preferentially use the VH1 gene family. J Virol 86: 11521–11532 doi: 11510.11128/JVI.01023-11512. Epub 12012 Aug 11515
102. ChungA, RollmanE, JohanssonS, KentSJ, StratovI (2008) The utility of ADCC responses in HIV infection. Curr HIV Res 6: 515–519.
103. WrenLH, StratovI, KentSJ, ParsonsMS (2013) Obstacles to ideal anti-HIV antibody-dependent cellular cytotoxicity responses. Vaccine 24: 01126–01122.
104. FeldmanS, SteinD, AmruteS, DennyT, GarciaZ, et al. (2001) Decreased interferon-alpha production in HIV-infected patients correlates with numerical and functional deficiencies in circulating type 2 dendritic cell precursors. Clin Immunol 101: 201–210.
105. MalleretB, ManeglierB, KarlssonI, LebonP, NascimbeniM, et al. (2008) Primary infection with simian immunodeficiency virus: plasmacytoid dendritic cell homing to lymph nodes, type I interferon, and immune suppression. Blood 112: 4598–4608 doi: 4510.1182/blood-2008-4506-162651. Epub 162008 Sep 162611
106. HotterD, SauterD, KirchhoffF (2013) Emerging Role of the Host Restriction Factor Tetherin in Viral Immune Sensing. J Mol Biol 26: 029.
107. CarringtonM, AlterG (2012) Innate immune control of HIV. Cold Spring Harb Perspect Med 2: a007070 doi: 007010.001101/cshperspect.a007070
108. CunninghamAL, HarmanA, KimM, NasrN, LaiJ (2013) Immunobiology of dendritic cells and the influence of HIV infection. Adv Exp Med Biol 762: 1–44 10.1007/1978-1001-4614-4433-1006_1001.
109. LionE, SmitsEL, BernemanZN, Van TendelooVF (2012) NK cells: key to success of DC-based cancer vaccines? Oncologist 17: 1256–1270 doi: 1210.1634/theoncologist.2011-0122. Epub 2012 Aug 1220
110. PembrokeTP, GallimoreAM, GodkinA (2013) Rapid innate control of antigen abrogates adaptive immunity. Immunology 138: 293–297 doi: 210.1111/imm.12048
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 3
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Cytomegalovirus m154 Hinders CD48 Cell-Surface Expression and Promotes Viral Escape from Host Natural Killer Cell Control
- Human African Trypanosomiasis and Immunological Memory: Effect on Phenotypic Lymphocyte Profiles and Humoral Immunity
- Conflicting Interests in the Pathogen–Host Tug of War: Fungal Micronutrient Scavenging Versus Mammalian Nutritional Immunity
- DHX36 Enhances RIG-I Signaling by Facilitating PKR-Mediated Antiviral Stress Granule Formation