Anthrax Lethal Factor as an Immune Target in Humans and Transgenic Mice and the Impact of HLA Polymorphism on CD4 T Cell Immunity
Anthrax is of concern with respect to human exposure in endemic regions, concerns about bioterrorism and the considerable global burden of livestock infections. The immunology of this disease remains poorly understood. Vaccination has been based on B. anthracis filtrates or attenuated spore-based vaccines, with more recent trials of next-generation recombinant vaccines. Approaches generally require extensive vaccination regimens and there have been concerns about immunogenicity and adverse reactions. An ongoing need remains for rationally designed, effective and safe anthrax vaccines. The importance of T cell stimulating vaccines is inceasingly recognized. An essential step is an understanding of immunodominant epitopes and their relevance across the diverse HLA immune response genes of human populations. We characterized CD4 T cell immunity to anthrax Lethal Factor (LF), using HLA transgenic mice, as well as testing candidate peptide epitopes for binding to a wide range of HLA alleles. We identified anthrax epitopes, noteworthy in that they elicit exceptionally strong immunity with promiscuous binding across multiple HLA alleles and isotypes. T cell responses in humans exposed to LF through either natural anthrax infection or vaccination were also examined. Epitopes identified as candidates were used to protect HLA transgenic mice from anthrax challenge.
Vyšlo v časopise:
Anthrax Lethal Factor as an Immune Target in Humans and Transgenic Mice and the Impact of HLA Polymorphism on CD4 T Cell Immunity. PLoS Pathog 10(5): e32767. doi:10.1371/journal.ppat.1004085
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004085
Souhrn
Anthrax is of concern with respect to human exposure in endemic regions, concerns about bioterrorism and the considerable global burden of livestock infections. The immunology of this disease remains poorly understood. Vaccination has been based on B. anthracis filtrates or attenuated spore-based vaccines, with more recent trials of next-generation recombinant vaccines. Approaches generally require extensive vaccination regimens and there have been concerns about immunogenicity and adverse reactions. An ongoing need remains for rationally designed, effective and safe anthrax vaccines. The importance of T cell stimulating vaccines is inceasingly recognized. An essential step is an understanding of immunodominant epitopes and their relevance across the diverse HLA immune response genes of human populations. We characterized CD4 T cell immunity to anthrax Lethal Factor (LF), using HLA transgenic mice, as well as testing candidate peptide epitopes for binding to a wide range of HLA alleles. We identified anthrax epitopes, noteworthy in that they elicit exceptionally strong immunity with promiscuous binding across multiple HLA alleles and isotypes. T cell responses in humans exposed to LF through either natural anthrax infection or vaccination were also examined. Epitopes identified as candidates were used to protect HLA transgenic mice from anthrax challenge.
Zdroje
1. HicksCW, SweeneyDA, CuiX, LiY, EichackerPQ (2012) An overview of anthrax infection including the recently identified form of disease in injection drug users. Intensive Care Med 38: 1092–1104 10.1007/s00134-012-2541-0 [doi]
2. RamsayCN, StirlingA, SmithJ, HawkinsG, BrooksT, et al. (2010) An outbreak of infection with Bacillus anthracis in injecting drug users in Scotland. Euro Surveill 15: pii: 19465.
3. PowellAG, CrozierJE, HodgsonH, GallowayDJ (2011) A case of septicaemic anthrax in an intravenous drug user. BMC Infect Dis 11: 21 1471-2334-11-21 [pii];10.1186/1471-2334-11-21 [doi]
4. AscoughS, IngramRJ, AbarraA, HolmesAJ, MaillereB, et al. (2014) Injectional anthrax infection due to heroin use induces strong immunological memory. Journal of Infection 68(2): 200–3.
5. ScobieHM, RaineyGJ, BradleyKA, YoungJA (2003) Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc Natl Acad Sci U S A 100: 5170–5174.
6. BradleyKA, MogridgeJ, MourezM, CollierRJ, YoungJA (2001) Identification of the cellular receptor for anthrax toxin. Nature 414: 225–229.
7. MartchenkoM, JeongSY, CohenSN (2010) Heterodimeric integrin complexes containing beta1-integrin promote internalization and lethality of anthrax toxin. Proc Natl Acad Sci U S A 107: 15583–15588 1010145107 [pii];10.1073/pnas.1010145107 [doi]
8. AgrawalA, LingappaJ, LepplaSH, AgrawalS, JabbarA, et al. (2003) Impairment of dendritic cells and adaptive immunity by anthrax lethal toxin. Nature 424: 329–334.
9. FangH, XuLX, ChenTY, CyrJM, et al. (2006) Anthrax lethal toxin has direct and potent inhibitory effects on B cell proliferation and immunoglobulin production. Journal of Immunology 176: 6155–6161.
10. JoshiSK, LangGA, LarabeeJL, DeveraTS, AyeLM, et al. (2009) Bacillus anthracis lethal toxin disrupts TCR signaling in CD1d-restricted NKT cells leading to functional anergy. PLoS Pathog 5: e1000588.
11. KhanMA, GalloRM, BrutkiewiczRR (2010) Anthrax Lethal Toxin Impairs CD1d-Mediated Antigen Presentation by Targeting the ERK1/2 MAPK Pathway. Infect Immun 78(5): 1859–63.
12. BaillieLW (2006) Past, imminent and future human medical countermeasures for anthrax. J Appl Microbiol 101: 594–606.
13. TurnbullPC (1991) Anthrax vaccines: past, present and future. Vaccine 9: 533–539.
14. BreyRN (2005) Molecular basis for improved anthrax vaccines. Adv Drug Deliv Rev 57: 1266–1292.
15. EnstoneJE, WaleMC, Nguyen-Van-TamJS, PearsonJC (2003) Adverse medical events in British service personnel following anthrax vaccination. Vaccine 21: 1348–1354.
16. BaillieLW, FowlerK, TurnbullPC (1999) Human immune responses to the UK human anthrax vaccine. J Appl Microbiol 87: 306–308.
17. BrownBK, CoxJ, GillisA, VanCottTC, MarovichM, et al. (2010) Phase I Study of Safety and Immunogenicity of an Escherichia coli-Derived Recombinant Protective Antigen (rPA) Vaccine to Prevent Anthrax in Adults. PLoS ONE 5: e13849.
18. CampbellJD, ClementKH, WassermanSS, DoneganS, ChrisleyL, et al. (2007) Safety, reactogenicity and immunogenicity of a recombinant protective antigen anthrax vaccine given to healthy adults. Hum Vaccin 3: 205–211.
19. GorseGJ, KeitelW, KeyserlingH, TaylorDN, LockM, et al. (2006) Immunogenicity and tolerance of ascending doses of a recombinant protective antigen (rPA102) anthrax vaccine: a randomized, double-blinded, controlled, multicenter trial. Vaccine 24: 5950–5959.
20. PajewskiNM, ParkerSD, PolandGA, OvsyannikovaIG, SongW, et al. (2011) The role of HLA-DR-DQ haplotypes in variable antibody responses to anthrax vaccine adsorbed. Genes Immun 12: 457–465 gene201115 [pii];10.1038/gene.2011.15 [doi]
21. PajewskiNM, ShresthaS, QuinnCP, ParkerSD, WienerH, et al. (2012) A genome-wide association study of host genetic determinants of the antibody response to Anthrax Vaccine Adsorbed. Vaccine 30: 4778–4784 S0264-410X(12)00736-0 [pii];10.1016/j.vaccine.2012.05.032 [doi]
22. MaranoN, PlikaytisBD, MartinSW, RoseC, SemenovaVA, et al. (2008) Effects of a reduced dose schedule and intramuscular administration of anthrax vaccine adsorbed on immunogenicity and safety at 7 months: a randomized trial. JAMA 300: 1532–1543.
23. PittmanPR, NorrisSL, Barrera OroJG, BedwellD, et al. (2006) Patterns of antibody response in humans to the anthrax vaccine adsorbed (AVA) primary (six-dose) series. Vaccine 24: 3654–3660.
24. LittleSF, IvinsBE, WebsterWM, FellowsPF, PittML, et al. (2006) Duration of protection of rabbits after vaccination with Bacillus anthracis recombinant protective antigen vaccine. Vaccine 24: 2530–2536.
25. WattiauP, GovaertsM, FrangoulidisD, FretinD, KisslingE, et al. (2009) Immunologic response of unvaccinated workers exposed to anthrax, Belgium. Emerg Infect Dis 15: 1637–1640.
26. KisslingE, WattiauP, ChinaB, PoncinM, FretinD, et al. (2012) B. anthracis in a wool-processing factory: seroprevalence and occupational risk. Epidemiol Infect 140: 879–886.
27. WangJY, RoehrlMH (2005) Anthrax vaccine design: strategies to achieve comprehensive protection against spore, bacillus, and toxin. Med Immunol 4: 4.
28. BrossierF, LevyM, MockM (2002) Anthrax spores make an essential contribution to vaccine efficacy. Infect Immun 70: 661–664.
29. ChabotDJ, ScorpioA, ToberySA, LittleSF, NorrisSL, et al. (2004) Anthrax capsule vaccine protects against experimental infection. Vaccine 23: 43–47.
30. PezardC, WeberM, SirardJC, BercheP, MockM (1995) Protective immunity induced by Bacillus anthracis toxin-deficient strains. Infect Immun 63: 1369–1372.
31. TurnbullPC, LepplaSH, BrosterMG, QuinnCP, MellingJ (1988) Antibodies to anthrax toxin in humans and guinea pigs and their relevance to protective immunity. Med Microbiol Immunol 177: 293–303.
32. IngramRJ, MetanG, MaillereB, DoganayM, OzkulY, et al. (2010) Natural exposure to cutaneous anthrax gives long-lasting T cell immunity encompassing infection-specific epitopes. J Immunol 184: 3814–3821.
33. BlackwellJM, JamiesonSE, BurgnerD (2009) HLA and infectious diseases. Clin Microbiol Rev 2009 Apr;22(2): 370–85.
34. TrowsdaleJ, KnightJC (2013) Major histocompatibility complex genomics and human disease. Annu Rev Genomics Hum Genet. 2013 14: 301–23.
35. SternLJ, WileyDC (1994) Antigenic peptide binding by class I and class II histocompatibility proteins. Structure 15: 245–51.
36. Panina-BordignonP, TanA, TermijtelenA, DemotzS, CorradinG, et al. (1989) Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur J Immunol 19: 2237–2242 10.1002/eji.1830191209 [doi]
37. PancreV, GeorgesB, AngyalosiG, CastelliF, DelanoyeA, et al. (2002) Novel promiscuous HLA-DQ HIV Nef peptide that induces IFN-gamma-producing memory CD4+ T cells. Clin Exp Immunol 129: 429–437 1934 [pii].
38. SinigagliaF, GuttingerM, KilgusJ, DoranDM, MatileH, et al. (1988) A malaria T-cell epitope recognized in association with most mouse and human MHC class II molecules. Nature 336: 778–780 10.1038/336778a0 [doi]
39. SundbergE, JardetzkyTS (1999) Structural basis for HLA-DQ binding by the streptococcal superantigen SSA. Nat Struct Biol 6: 123–129 10.1038/5809 [doi]
40. BrownJH, JardetzkyTS, GorgaJC, SternLJ, UrbanRG, et al. (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364: 33–39 10.1038/364033a0 [doi]
41. JardetzkyTS, BrownJH, GorgaJC, SternLJ, UrbanRG, et al. (1996) Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides. Proc Natl Acad Sci U S A 93: 734–738.
42. Calvo-CalleJM, HammerJ, SinigagliaF, ClavijoP, Moya-CastroZR, et al. (1997) Binding of malaria T cell epitopes to DR and DQ molecules in vitro correlates with immunogenicity in vivo: identification of a universal T cell epitope in the Plasmodium falciparum circumsporozoite protein. J Immunol 159: 1362–1373.
43. QuinnCP, SinghY, KlimpelKR, LepplaSH (1991) Functional Mapping of Anthrax Toxin Lethal Factor by In-Frame Insertion Mutagenesis. Journal of Biological Chemistry 266: 20124–20130.
44. AscenziP, ViscaP, IppolitoG, SpallarossaA, BolognesiM, et al. (2002) Anthrax toxin: a tripartite lethal combination. FEBS Lett 531: 384–388.
45. GlomskiIJ, CorreJP, MockM, GoossensPL (2007) Cutting Edge: IFN-gamma-producing CD4 T lymphocytes mediate spore-induced immunity to capsulated Bacillus anthracis. J Immunol 178: 2646–2650.
46. BaldariCT, TonelloF, PaccaniSR, MontecuccoC (2006) Anthrax toxins: A paradigm of bacterial immune suppression. Trends Immunol 27: 434–440 S1471-4906(06)00207-9 [pii];10.1016/j.it.2006.07.002 [doi]
47. TerraJK, FranceB, CoteCK, JenkinsA, BozueJA, et al. (2011) Allelic variation on murine chromosome 11 modifies host inflammatory responses and resistance to Bacillus anthracis. PLoS Pathog 7: e1002469.
48. LevinsohnJL, NewmanZL, HellmichKA, FattahR, GetzMA, et al. (2012) Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog 8: e1002638.
49. TerraJK, CoteCK, FranceB, JenkinsAL, BozueJA, et al. (2010) Cutting edge: resistance to Bacillus anthracis infection mediated by a lethal toxin sensitive allele of Nalp1b/Nlrp1b. J Immunol 184: 17–20.
50. BoydenED, DietrichWF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38: 240–244.
51. QuinnCP, SabourinCL, NiemuthNA, et al. (2012) A Three-Dose Intramuscular Injection Schedule of Anthrax Vaccine Adsorbed Generates Sustained Humoral and Cellular Immune Responses to Protective Antigen and Provides Long-Term Protection against Inhalation Anthrax in Rhesus Macaques. Clin Vacc Immunol 19: 1730–1745.
52. PriceBM, LinerAL, ParkS, LepplaSH, MateczunA, et al. (2001) Protection against anthrax lethal toxin challenge by genetic immunization with a plasmid encoding the lethal factor protein. Infect Immun 69: 4509–4515.
53. GallowayD, LinerA, LegutkiJ, MateczunA, BarnewallR, et al. (2004) Genetic immunization against anthrax. Vaccine 22: 1604–1608.
54. HermansonG, WhitlowV, ParkerS, TonskyK, RusalovD, et al. (2004) A cationic lipid-formulated plasmid DNA vaccine confers sustained antibody-mediated protection against aerosolized anthrax spores. Proc Natl Acad Sci U S A 101: 13601–13606.
55. FishDC, MahlandtBG, DobbsJP, LincolnRE (1968) Purification and properties of in vitro-produced anthrax toxin components. J Bacteriol 95: 907–918.
56. KwokWW, LiuAW, NovakEJ, GebeJA, EttingerRA, et al. (2000) HLA-DQ tetramers identify epitope-specific T cells in peripheral blood of herpes simplex virus type 2-infected individuals: direct detection of immunodominant antigen-responsive cells. J Immunol 164: 4244–4249.
57. PanniferAD, WongTY, SchwarzenbacherR, RenatusM, PetosaC, et al. (2001) Crystal structure of the anthrax lethal factor. Nature 414: 229–233.
58. LiangXD, YoungJJ, BooneSA, WaughDS, DuesberyNS (2004) Involvement of domain II in toxicity of anthrax lethal factor. Journal of Biological Chemistry 279: 52473–52478.
59. MockM, RoquesBP (2002) Progress in rapid screening of Bacillus anthracis lethal factor activity. Proc Natl Acad Sci U S A 99: 6527–6529.
60. JamesEA, BuiJ, BergerD, HustonL, RotiM, et al. (2007) Tetramer-guided epitope mapping reveals broad, individualized repertoires of tetanus toxin-specific CD4+ T cells and suggests HLA-based differences in epitope recognition. Int Immunol 19: 1291–1301.
61. HammondSE, HannaPC (1998) Lethal factor active-site mutations affect catalytic activity in vitro. Infect Immun 66: 2374–2378.
62. DuesberyNS, WebbCP, LepplaSH, GordonVM, KlimpelKR, et al. (1998) Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280: 734–737.
63. BuusS, SetteA, ColonSM, MilesC, GreyHM (1987) The relation between major histocompatibility complex (MHC) restriction and the capacity of Ia to bind immunogenic peptides. Science 235: 1353–1358.
64. SchaefferEB, SetteA, JohnsonDL, BekoffMC, SmithJA, et al. (1989) Relative contribution of “determinant selection” and “holes in the T-cell repertoire” to T-cell responses. Proc Natl Acad Sci U S A 86: 4649–4653.
65. WeaverJM, LazarskiCA, RichardsKA, ChavesFA, JenksSA, et al. (2008) Immunodominance of CD4 T cells to foreign antigens is peptide intrinsic and independent of molecular context: implications for vaccine design. J Immunol 181: 3039–3048.
66. LazarskiCA, ChavesFA, JenksSA, WuS, RichardsKA, et al. (2005) The kinetic stability of MHC class II:peptide complexes is a key parameter that dictates immunodominance. Immunity 23: 29–40.
67. FriedlanderAM, BhatnagarR, LepplaSH, JohnsonL, SinghY (1993) Characterization of macrophage sensitivity and resistance to anthrax lethal toxin. Infect Immun 61: 245–252.
68. AroraN, LepplaSH (1993) Residues-1-254 of Anthrax Toxin Lethal Factor Are Sufficient to Cause Cellular Uptake of Fused Polypeptides. Journal of Biological Chemistry 268: 3334–3341.
69. NguyenML, TerzyanS, BallardJD, JamesJA, FarrisAD (2009) The major neutralizing antibody responses to recombinant anthrax lethal and edema factors are directed to non-cross-reactive epitopes. Infect Immun 77: 4714–4723.
70. BaillieLW, HuwarTB, MooreS, Mellado-SanchezG, RodriguezL, et al. (2010) An anthrax subunit vaccine candidate based on protective regions of Bacillus anthracis protective antigen and lethal factor. Vaccine 28: 6740–6748.
71. Guidi-RontaniC, DuflotE, MockM (1997) Anthrax lethal toxin-induced mitogenic response of human T-cells. FEMS Microbiol Lett 157: 285–289.
72. WeinerMA, HannaPC (2003) Macrophage-mediated germination of Bacillus anthracis endospores requires the gerH operon. Infect Immun 71: 3954–3959.
73. BrennemanKE, DoganayM, AkmalA, GoldmanS, GallowayDR, et al. (2011) The early humoral immune response to Bacillus anthracis toxins in patients infected with cutaneous anthrax. FEMS Immunol Med Microbiol 62: 164–172.
74. SiewLK, BeechJT, ThompsonSJ, ElsonCJ (1998) Effect of T-helper cytokine environment on specificity of T-cell responses to mycobacterial 65,000 MW heat-shock protein. Immunology 93: 493–497.
75. PaccaniSR, TonelloF, GhittoniR, NataleM, MuraroL, et al. (2005) Anthrax toxins suppress T lymphocyte activation by disrupting antigen receptor signaling. Journal of Experimental Medicine 201: 325–331.
76. FangH, Cordoba-RodriguezR, LankfordCSR, FruchtDM (2005) Anthrax lethal toxin blocks MAPK kinase-dependent IL-2 production in CD4(+) T cells. Journal of Immunology 174: 4966–4971.
77. ComerJE, ChopraAK, PetersonJW, KonigR (2005) Direct inhibition of T-lymphocyte activation by anthrax toxins in vivo. Infect Immun 73: 8275–8281.
78. PaccaniSR, BenagianoM, CapitaniN, ZornettaI, et al. (2009) The Adenylate Cyclase Toxins of Bacillus anthracis and Bordetella pertussis Promote Th2 Cell Development by Shaping T Cell Antigen Receptor Signaling. Plos Pathogens 5 5(3): e1000325 doi:10.1371
79. PaccaniSR, BenagianoM, SavinoMT, FinettiF, TonelloF, et al. (2011) The adenylate cyclase toxin of Bacillus anthracis is a potent promoter of T(H)17 cell development. J Allergy Clin Immunol 127: 1635–1637.
80. BaillieL, TownendT, WalkerN, ErikssonU, WilliamsonD (2004) Characterization of the human immune response to the UK anthrax vaccine. FEMS Immunol Med Microbiol 42: 267–270.
81. AltmannDM, TakacsK, TrowsdaleJ, ElliottJI (1993) Mouse mammary tumor virus-mediated T-cell receptor negative selection in HLA-DRA transgenic mice. Hum Immunol 37: 149–156.
82. EllmerichS, MyckoM, TakacsK, WaldnerH, WahidFN, et al. (2005) High incidence of spontaneous disease in an HLA-DR15 and TCR transgenic multiple sclerosis model. J Immunol 174: 1938–1946 174/4/1938 [pii].
83. EllmerichS, TakacsK, MyckoM, WaldnerH, WahidF, et al. (2004) Disease-related epitope spread in a humanized T cell receptor transgenic model of multiple sclerosis. Eur J Immunol 34: 1839–1848 10.1002/eji.200324044 [doi]
84. ItoK, BianHJ, MolinaM, HanJ, MagramJ, et al. (1996) HLA-DR4-IE chimeric class II transgenic, murine class II-deficient mice are susceptible to experimental allergic encephalomyelitis. J Exp Med 183: 2635–2644.
85. BoytonRJ, LohmannT, LondeiM, KalbacherH, HalderT, et al. (1998) Glutamic acid decarboxylase T lymphocyte responses associated with susceptibility or resistance to type I diabetes: analysis in disease discordant human twins, non-obese diabetic mice and HLA-DQ transgenic mice. Int Immunol 10: 1765–1776.
86. KaushanskyN, AltmannDM, AscoughS, DavidCS, LassmannH, et al. (2009) HLA-DQB1*0602 determines disease susceptibility in a new “humanized” multiple sclerosis model in HLA-DR15 (DRB1*1501;DQB1*0602) transgenic mice. J Immunol 183: 3531–3541 jimmunol.0900784 [pii];10.4049/jimmunol.0900784 [doi]
87. TexierC, PouvelleS, BussonM, HerveM, CharronD, et al. (2000) HLA-DR restricted peptide candidates for bee venom immunotherapy. J Immunol 164: 3177–3184 ji_v164n6p3177 [pii].
88. LairdMW, ZukauskasD, JohnsonK, SampeyGC, OlsenH, et al. (2004) Production and purification of Bacillus anthracis protective antigen from Escherichia coli. Protein Expr Purif 38: 145–152 S1046-5928(04)00282-7 [pii];10.1016/j.pep.2004.08.007 [doi]
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 5
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Venus Kinase Receptors Control Reproduction in the Platyhelminth Parasite
- Dual-Site Phosphorylation of the Control of Virulence Regulator Impacts Group A Streptococcal Global Gene Expression and Pathogenesis
- Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Ion Channel Activity Promotes Virus Fitness and Pathogenesis
- High-Efficiency Targeted Editing of Large Viral Genomes by RNA-Guided Nucleases