Hip1 Modulates Macrophage Responses through Proteolysis of GroEL2
Mycobacterium tuberculosis (Mtb) faces adverse conditions within host cells and has evolved many mechanisms to adapt quickly to the hostile immune environment. We have previously shown that an Mtb factor, Hip1, is important for Mtb virulence and for modulating host immunity. While Hip1 was predicted to be a protease, its enzymatic activity and molecular mechanism of function remained unclear. We have now characterized the biochemistry of Hip1 and conclusively show that Hip1 is a serine protease that can process peptide substrates. Further, we have identified a physiological target for Hip1 activity in Mtb, the Mtb chaperone-like protein GroEL2. Interestingly, cleavage of GroEL2 by Hip1 converted GroEL2 from a multimeric cell wall-associated protein to a monomeric form that is secreted extracellularly. Importantly, we show that cleavage of GroEL2 by Hip1 is biologically relevant and promotes dampening of macrophage responses during Mtb infection. Thus, our studies have uncovered a fine-tuned strategy of immune modulation at the protein level that involves regulating Hip1-GroEL2 interactions and provide key molecular insights for targeting Hip1 protease activity for inhibition.
Vyšlo v časopise:
Hip1 Modulates Macrophage Responses through Proteolysis of GroEL2. PLoS Pathog 10(5): e32767. doi:10.1371/journal.ppat.1004132
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004132
Souhrn
Mycobacterium tuberculosis (Mtb) faces adverse conditions within host cells and has evolved many mechanisms to adapt quickly to the hostile immune environment. We have previously shown that an Mtb factor, Hip1, is important for Mtb virulence and for modulating host immunity. While Hip1 was predicted to be a protease, its enzymatic activity and molecular mechanism of function remained unclear. We have now characterized the biochemistry of Hip1 and conclusively show that Hip1 is a serine protease that can process peptide substrates. Further, we have identified a physiological target for Hip1 activity in Mtb, the Mtb chaperone-like protein GroEL2. Interestingly, cleavage of GroEL2 by Hip1 converted GroEL2 from a multimeric cell wall-associated protein to a monomeric form that is secreted extracellularly. Importantly, we show that cleavage of GroEL2 by Hip1 is biologically relevant and promotes dampening of macrophage responses during Mtb infection. Thus, our studies have uncovered a fine-tuned strategy of immune modulation at the protein level that involves regulating Hip1-GroEL2 interactions and provide key molecular insights for targeting Hip1 protease activity for inhibition.
Zdroje
1. PhilipsJA, ErnstJD (2012) Tuberculosis pathogenesis and immunity. Annu Rev Pathol 7: 353–384.
2. EhrtS, SchnappingerD (2009) Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell Microbiol 11: 1170–1178.
3. RussellDG (2001) Mycobacterium tuberculosis: here today, here tomorrow. Nature Reviews 2: 569–577.
4. Almeida Da SilvaPE, PalominoJC (2011) Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother 66: 1417–1430.
5. MakinoshimaH, GlickmanMS (2005) Regulation of Mycobacterium tuberculosis cell envelope composition and virulence by intramembrane proteolysis. Nature 436: 406–409.
6. RengarajanJ, BloomBR, RubinEJ (2005) Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A 102: 8327–8332.
7. RengarajanJ, MurphyE, ParkA, KroneCL, HettEC, et al. (2008) Mycobacterium tuberculosis Rv2224c modulates innate immune responses. Proc Natl Acad Sci U S A 105: 264–269.
8. Madan-LalaR, PeixotoKV, ReF, RengarajanJ (2011) Mycobacterium tuberculosis Hip1 dampens macrophage proinflammatory responses by limiting toll-like receptor 2 activation. Infect Immun 79: 4828–4838.
9. VandalOH, RobertsJA, OdairaT, SchnappingerD, NathanCF, et al. (2009) Acid-susceptible mutants of Mycobacterium tuberculosis share hypersusceptibility to cell wall and oxidative stress and to the host environment. J Bacteriol 191: 625–631.
10. FloresAR, ParsonsLM, PavelkaMSJr (2005) Characterization of novel Mycobacterium tuberculosis and Mycobacterium smegmatis mutants hypersusceptible to beta-lactam antibiotics. J Bacteriol 187: 1892–1900.
11. BinnieC, ButlerMJ, AphaleJS, BourgaultR, DiZonnoMA, et al. (1995) Isolation and characterization of two genes encoding proteases associated with the mycelium of Streptomyces lividans 66. J Bacteriol 177: 6033–6040.
12. FerreF, CloteP (2005) DiANNA: a web server for disulfide connectivity prediction. Nucleic Acids Res 33: W230–232.
13. HedstromL (2002) Serine protease mechanism and specificity. Chem Rev 102: 4501–4523.
14. MasterSS, RampiniSK, DavisAS, KellerC, EhlersS, et al. (2008) Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 3: 224–232.
15. FerrarisDM, SbardellaD, PetreraA, MariniS, AmstutzB, et al. (2011) Crystal structure of Mycobacterium tuberculosis zinc-dependent metalloprotease-1 (Zmp1), a metalloprotease involved in pathogenicity. J Biol Chem 286: 32475–32482.
16. SmallJL, O'DonoghueAJ, BoritschEC, TsodikovOV, KnudsenGM, et al. (2013) Substrate specificity of MarP, a periplasmic protease required for resistance to acid and oxidative stress in Mycobacterium tuberculosis. J Biol Chem 288: 12489–12499.
17. VandalOH, PieriniLM, SchnappingerD, NathanCF, EhrtS (2008) A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nat Med 14: 849–854.
18. BiswasT, SmallJ, VandalO, OdairaT, DengH, et al. (2010) Structural insight into serine protease Rv3671c that Protects M. tuberculosis from oxidative and acidic stress. Structure 18: 1353–1363.
19. WhiteMJ, HeH, PenoskeRM, TwiningSS, ZahrtTC (2010) PepD participates in the mycobacterial stress response mediated through MprAB and SigE. J Bacteriol 192: 1498–1510.
20. WhiteMJ, SavarynJP, BretlDJ, HeH, PenoskeRM, et al. (2011) The HtrA-like serine protease PepD interacts with and modulates the Mycobacterium tuberculosis 35-kDa antigen outer envelope protein. PLoS One 6: e18175.
21. RajuRM, UnnikrishnanM, RubinDH, KrishnamoorthyV, KandrorO, et al. (2012) Mycobacterium tuberculosis ClpP1 and ClpP2 function together in protein degradation and are required for viability in vitro and during infection. PLoS Pathog 8: e1002511.
22. PersonneY, BrownAC, SchuesslerDL, ParishT (2013) Mycobacterium tuberculosis ClpP proteases are co-transcribed but exhibit different substrate specificities. PLoS One 8: e60228.
23. OllingerJ, O'MalleyT, KesickiEA, OdingoJ, ParishT (2012) Validation of the essential ClpP protease in Mycobacterium tuberculosis as a novel drug target. J Bacteriol 194: 663–668.
24. RawlingsND, BarrettAJ, BatemanA (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 40: D343–350.
25. LunS, BishaiWR (2007) Characterization of a novel cell wall-anchored protein with carboxylesterase activity required for virulence in Mycobacterium tuberculosis. J Biol Chem 282: 18348–18356.
26. PowersJC, AsgianJL, EkiciOD, JamesKE (2002) Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 102: 4639–4750.
27. KuramochiH, NakataH, IshiiS (1979) Mechanism of association of a specific aldehyde inhibitor, leupeptin, with bovine trypsin. J Biochem 86: 1403–1410.
28. UmezawaH (1976) Structures and activitites of protease inhibitors of microbial origin. Methods Enzymol 45: 678–695.
29. KumarCM, KhareG, SrikanthCV, TyagiAK, SardesaiAA, et al. (2009) Facilitated oligomerization of mycobacterial GroEL: evidence for phosphorylation-mediated oligomerization. J Bacteriol 191: 6525–6538.
30. QamraR, MandeSC, CoatesAR, HendersonB (2005) The unusual chaperonins of Mycobacterium tuberculosis. Tuberculosis (Edinb) 85: 385–394.
31. CehovinA, CoatesAR, HuY, Riffo-VasquezY, TormayP, et al. (2010) Comparison of the moonlighting actions of the two highly homologous chaperonin 60 proteins of Mycobacterium tuberculosis. Infect Immun 78: 3196–3206.
32. LewthwaiteJC, CoatesAR, TormayP, SinghM, MascagniP, et al. (2001) Mycobacterium tuberculosis chaperonin 60.1 is a more potent cytokine stimulator than chaperonin 60.2 (Hsp 65) and contains a CD14-binding domain. Infect Immun 69: 7349–7355.
33. FujiiR, NakagawaY, HiratakeJ, SogabeA, SakataK (2005) Directed evolution of Pseudomonas aeruginosa lipase for improved amide-hydrolyzing activity. Protein Eng Des Sel 18: 93–101.
34. BachovchinDA, CravattBF (2012) The pharmacological landscape and therapeutic potential of serine hydrolases. Nat Rev Drug Discov 11: 52–68.
35. ZhaoQ, XieJ (2011) Mycobacterium tuberculosis proteases and implications for new antibiotics against tuberculosis. Critical Reviews in Eukaryotic Gene Expression 21: 347–361.
36. Ribeiro-GuimaraesML, PessolaniMC (2007) Comparative genomics of mycobacterial proteases. Microb Pathog 43: 173–178.
37. Sturgill-KoszyckiS, SchlesingerPH, ChakrabortyP, HaddixPL, CollinsHL, et al. (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton- ATPase. Science 263: 678–681.
38. RohdeK, YatesRM, PurdyGE, RussellDG (2007) Mycobacterium tuberculosis and the environment within the phagosome. Immunological Reviews 219: 37–54.
39. VandalOH, NathanCF, EhrtS (2009) Acid resistance in Mycobacterium tuberculosis. Journal of Bacteriology 191: 4714–4721.
40. GrinsteinS, SwallowCJ, RotsteinOD (1991) Regulation of cytoplasmic pH in phagocytic cell function and dysfunction. Clin Biochem 24: 241–247.
41. FanM, RaoT, ZaccoE, AhmedMT, ShuklaA, et al. (2012) The unusual mycobacterial chaperonins: evidence for in vivo oligomerization and specialization of function. Mol Microbiol 85: 934–944.
42. QamraR, MandeSC (2004) Crystal structure of the 65-kilodalton heat shock protein, chaperonin 60.2, of Mycobacterium tuberculosis. J Bacteriol 186: 8105–8113.
43. QamraR, SrinivasV, MandeSC (2004) Mycobacterium tuberculosis GroEL homologues unusually exist as lower oligomers and retain the ability to suppress aggregation of substrate proteins. J Mol Biol 342: 605–617.
44. ShaharA, Melamed-FrankM, KashiY, ShimonL, AdirN (2011) The dimeric structure of the Cpn60.2 chaperonin of Mycobacterium tuberculosis at 2.8 A reveals possible modes of function. J Mol Biol 412: 192–203.
45. HorovitzA, BochkarevaES, GirshovichAS (1993) The N terminus of the molecular chaperonin GroEL is a crucial structural element for its assembly. J Biol Chem 268: 9957–9959.
46. ChenK, LuJ, WangL, GanYH (2004) Mycobacterial heat shock protein 65 enhances antigen cross-presentation in dendritic cells independent of Toll-like receptor 4 signaling. J Leukoc Biol 75: 260–266.
47. BulutY, MichelsenKS, HayrapetianL, NaikiY, SpallekR, et al. (2005) Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J Biol Chem 280: 20961–20967.
48. LewthwaiteJC, ClarkinCE, CoatesAR, PooleS, LawrenceRA, et al. (2007) Highly homologous Mycobacterium tuberculosis chaperonin 60 proteins with differential CD14 dependencies stimulate cytokine production by human monocytes through cooperative activation of p38 and ERK1/2 mitogen-activated protein kinases. Int Immunopharmacol 7: 230–240.
49. LeeB, HorwitzMA (1995) Identification of macrophage and stress-induced proteins of Mycobacterium tuberculosis. J Clin Invest 96: 245–249.
50. DosanjhNS, RawatM, ChungJH, Av-GayY (2005) Thiol specific oxidative stress response in Mycobacteria. FEMS Microbiol Lett 249: 87–94.
51. StarckJ, KalleniusG, MarklundBI, AnderssonDI, AkerlundT (2004) Comparative proteome analysis of Mycobacterium tuberculosis grown under aerobic and anaerobic conditions. Microbiology 150: 3821–3829.
52. YoungDB, GarbeTR (1991) Heat shock proteins and antigens of Mycobacterium tuberculosis. Infection and Immunity 59: 3086–3093.
53. YangH, TroudtJ, GroverA, ArnettK, LucasM, et al. (2011) Three protein cocktails mediate delayed-type hypersensitivity responses indistinguishable from that elicited by purified protein derivative in the guinea pig model of Mycobacterium tuberculosis infection. Infect Immun 79: 716–723.
54. ChoYS, DobosKM, PrenniJ, YangH, HessA, et al. (2012) Deciphering the proteome of the in vivo diagnostic reagent “purified protein derivative” from Mycobacterium tuberculosis. Proteomics 12: 979–991.
55. HickeyTB, ThorsonLM, SpeertDP, DaffeM, StokesRW (2009) Mycobacterium tuberculosis Cpn60.2 and DnaK are located on the bacterial surface, where Cpn60.2 facilitates efficient bacterial association with macrophages. Infect Immun 77: 3389–3401.
56. HickeyTB, ZiltenerHJ, SpeertDP, StokesRW (2010) Mycobacterium tuberculosis employs Cpn60.2 as an adhesin that binds CD43 on the macrophage surface. Cell Microbiol 12: 1634–1647.
57. IngmerH, BrondstedL (2009) Proteases in bacterial pathogenesis. Res Microbiol 160: 704–710.
58. ZhongG (2011) Chlamydia trachomatis secretion of proteases for manipulating host signaling pathways. Front Microbiol 2: 14 doi: 10.3389/fmicb.2011.00014. eCollection 02011
59. SklarJG, MakinoshimaH, SchneiderJS, GlickmanMS (2010) M. tuberculosis intramembrane protease Rip1 controls transcription through three anti-sigma factor substrates. Mol Microbiol 77: 605–617.
60. MukherjeeP, SurekaK, DattaP, HossainT, BarikS, et al. (2009) Novel role of Wag31 in protection of mycobacteria under oxidative stress. Mol Microbiol 73: 103–119.
61. OholYM, GoetzDH, ChanK, ShilohMU, CraikCS, et al. (2010) Mycobacterium tuberculosis MycP1 protease plays a dual role in regulation of ESX-1 secretion and virulence. Cell Host Microbe 7: 210–220.
62. SinghA, MaiD, KumarA, SteynAJ (2006) Dissecting virulence pathways of Mycobacterium tuberculosis through protein-protein association. Proc Natl Acad Sci U S A 103: 11346–11351.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 5
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Venus Kinase Receptors Control Reproduction in the Platyhelminth Parasite
- Dual-Site Phosphorylation of the Control of Virulence Regulator Impacts Group A Streptococcal Global Gene Expression and Pathogenesis
- Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Ion Channel Activity Promotes Virus Fitness and Pathogenesis
- High-Efficiency Targeted Editing of Large Viral Genomes by RNA-Guided Nucleases