#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Hepatitis C Virus Cell-Cell Transmission and Resistance to Direct-Acting Antiviral Agents


In spite of the rapid development of antiviral agents, antiviral resistance remains a challenge for the treatment of viral infections including hepatitis B and C virus (HBV, HCV), human immunodeficiency virus (HIV) and influenza. Virus spreads from infected cells to surrounding uninfected host cells to develop infection through cell-free and cell-cell transmission routes. Understanding the spread of resistant virus is important for the development of novel antiviral strategies to prevent and treat antiviral resistance. Here, we characterize the spread of resistant viruses and its impact for emergence and prevention of resistance using HCV as a model system. Our results show that cell-cell transmission is the main transmission route for antiviral resistant HCV strains and is crucial for the maintenance of infection. Monoclonal antibodies or small molecules targeting HCV entry factors are effective in inhibiting the spread of resistant HCV in cell culture models and thus should be evaluated clinically for prevention and treatment of HCV resistance. Combination of inhibitors targeting viral entry and clinically used direct-acting antivirals (DAAs) prevents antiviral resistance and leads to viral eradication in cell culture models. Collectively, the investigation provides a new strategy for prevention of viral resistance to antiviral agents.


Vyšlo v časopise: Hepatitis C Virus Cell-Cell Transmission and Resistance to Direct-Acting Antiviral Agents. PLoS Pathog 10(5): e32767. doi:10.1371/journal.ppat.1004128
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004128

Souhrn

In spite of the rapid development of antiviral agents, antiviral resistance remains a challenge for the treatment of viral infections including hepatitis B and C virus (HBV, HCV), human immunodeficiency virus (HIV) and influenza. Virus spreads from infected cells to surrounding uninfected host cells to develop infection through cell-free and cell-cell transmission routes. Understanding the spread of resistant virus is important for the development of novel antiviral strategies to prevent and treat antiviral resistance. Here, we characterize the spread of resistant viruses and its impact for emergence and prevention of resistance using HCV as a model system. Our results show that cell-cell transmission is the main transmission route for antiviral resistant HCV strains and is crucial for the maintenance of infection. Monoclonal antibodies or small molecules targeting HCV entry factors are effective in inhibiting the spread of resistant HCV in cell culture models and thus should be evaluated clinically for prevention and treatment of HCV resistance. Combination of inhibitors targeting viral entry and clinically used direct-acting antivirals (DAAs) prevents antiviral resistance and leads to viral eradication in cell culture models. Collectively, the investigation provides a new strategy for prevention of viral resistance to antiviral agents.


Zdroje

1. ZhongP, AgostoLM, MunroJB, MothesW (2013) Cell-to-cell transmission of viruses. Curr Opin Virol 3: 44–50.

2. SattentauQ (2008) Avoiding the void: cell-to-cell spread of human viruses. Nat Rev Microbiol 6: 815–826.

3. MeredithLW, HarrisHJ, WilsonGK, FletcherNF, BalfeP, et al. (2013) Early infection events highlight the limited transmissibility of hepatitis C virus in vitro. J Hepatol 58: 1074–1080.

4. TimpeJM, StamatakiZ, JenningsA, HuK, FarquharMJ, et al. (2008) Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology 47: 17–24.

5. ZeiselMB, LupbergerJ, FofanaI, BaumertTF (2013) Host-targeting agents for prevention and treatment of chronic hepatitis C - perspectives and challenges. J Hepatol 58: 375–384.

6. LupbergerJ, ZeiselMB, XiaoF, ThumannC, FofanaI, et al. (2011) EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med 17: 589–595.

7. ZonaL, LupbergerJ, Sidahmed-AdrarN, ThumannC, HarrisHJ, et al. (2013) HRas signal transduction promotes hepatitis C virus cell entry by triggering assembly of the host tetraspanin receptor complex. Cell Host Microbe 13: 302–313.

8. ZahidMN, TurekM, XiaoF, Dao ThiVL, GuerinM, et al. (2013) The postbinding activity of scavenger receptor class B type I mediates initiation of hepatitis C virus infection and viral dissemination. Hepatology 57: 492–504.

9. FofanaI, XiaoF, ThumannC, TurekM, ZonaL, et al. (2013) A novel monoclonal anti-CD81 antibody produced by genetic immunization efficiently inhibits Hepatitis C virus cell-cell transmission. PLoS One 8: e64221.

10. CataneseMT, LoureiroJ, JonesCT, DornerM, von HahnT, et al. (2013) Different requirements for scavenger receptor class B type I in hepatitis C virus cell-free versus cell-to-cell transmission. J Virol 87: 8282–8293.

11. WitteveldtJ, EvansMJ, BitzegeioJ, KoutsoudakisG, OwsiankaAM, et al. (2009) CD81 is dispensable for hepatitis C virus cell-to-cell transmission in hepatoma cells. J Gen Virol 90: 48–58.

12. BrimacombeCL, GroveJ, MeredithLW, HuK, SyderAJ, et al. (2011) Neutralizing antibody-resistant hepatitis C virus cell-to-cell transmission. J Virol 85: 596–605.

13. KwonH, LokAS (2011) Hepatitis B therapy. Nat Rev Gastroenterol Hepatol 8: 275–284.

14. TronoD, Van LintC, RouziouxC, VerdinE, Barre-SinoussiF, et al. (2010) HIV persistence and the prospect of long-term drug-free remissions for HIV-infected individuals. Science 329: 174–180.

15. McHutchisonJG, MannsMP, MuirAJ, TerraultNA, JacobsonIM, et al. (2010) Telaprevir for previously treated chronic HCV infection. N Engl J Med 362: 1292–1303.

16. PoordadF, McConeJJr, BaconBR, BrunoS, MannsMP, et al. (2011) Boceprevir for untreated chronic HCV genotype 1 infection. N Engl J Med 364: 1195–1206.

17. RongL, DahariH, RibeiroRM, PerelsonAS (2010) Rapid emergence of protease inhibitor resistance in hepatitis C virus. Sci Transl Med 2: 30ra32.

18. LangeCM, ZeuzemS (2013) Perspectives and challenges of interferon-free therapy for chronic hepatitis C. J Hepatol 58: 583–592.

19. PawlotskyJM (2013) Treatment of chronic hepatitis C: current and future. Curr Top Microbiol Immunol 369: 321–342.

20. SarrazinC, HezodeC, ZeuzemS, PawlotskyJM (2012) Antiviral strategies in hepatitis C virus infection. J Hepatol 56 Suppl 1S88–100.

21. LokAS, GardinerDF, LawitzE, MartorellC, EversonGT, et al. (2012) Preliminary study of two antiviral agents for hepatitis C genotype 1. N Engl J Med 366: 216–224.

22. JacobsonIM, GordonSC, KowdleyKV, YoshidaEM, Rodriguez-TorresM, et al. (2013) Sofosbuvir for hepatitis C genotype 2 or 3 in patients without treatment options. N Engl J Med 368: 1867–1877.

23. GaneEJ, StedmanCA, HylandRH, DingX, SvarovskaiaE, et al. (2013) Nucleotide polymerase inhibitor sofosbuvir plus ribavirin for hepatitis C. N Engl J Med 368: 34–44.

24. PoordadF, LawitzE, KowdleyKV, CohenDE, PodsadeckiT, et al. (2013) Exploratory study of oral combination antiviral therapy for hepatitis C. N Engl J Med 368: 45–53.

25. TremblingPM, TanwarS, RosenbergWM, DusheikoGM (2013) Treatment decisions and contemporary versus pending treatments for hepatitis C. Nat Rev Gastroenterol Hepatol 10: 713–728.

26. LiangTJ, GhanyMG (2013) Current and future therapies for hepatitis C virus infection. N Engl J Med 368: 1907–1917.

27. SorianoV, VispoE, PovedaE, LabargaP, BarreiroP (2012) Treatment failure with new hepatitis C drugs. Expert Opin Pharmacother 13: 313–323.

28. GottweinJM, JensenSB, LiYP, GhanemL, ScheelTK, et al. (2013) Combination treatment with hepatitis C virus protease and NS5A inhibitors is effective against recombinant genotype 1a, 2a, and 3a viruses. Antimicrob Agents Chemother 57: 1291–1303.

29. HezodeC, FontaineH, DorivalC, LarreyD, ZoulimF, et al. (2013) Triple therapy in treatment-experienced patients with HCV-cirrhosis in a multicentre cohort of the French Early Access Programme (ANRS CO20-CUPIC) - NCT01514890. J Hepatol 59: 434–441.

30. ZhongJ, GastaminzaP, ChengG, KapadiaS, KatoT, et al. (2005) Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci USA 102: 9294–9299.

31. JonesCT, CataneseMT, LawLM, KhetaniSR, SyderAJ, et al. (2010) Real-time imaging of hepatitis C virus infection using a fluorescent cell-based reporter system. Nat Biotechnol 28: 167–171.

32. Fofana I, Krieger SE, Grunert F, Glauben S, Xiao F, et al.. (2010) Monoclonal anti-claudin 1 antibodies prevent hepatitis C virus infection of primary human hepatocytes. Gastroenterology 139: : 953–964, 964 e951–954.

33. OwsiankaA, TarrAW, JuttlaVS, LavilletteD, BartoschB, et al. (2005) Monoclonal antibody AP33 defines a broadly neutralizing epitope on the hepatitis C virus E2 envelope glycoprotein. J Virol 79: 11095–11104.

34. Fofana I, Fafi-Kremer S, Carolla P, Fauvelle C, Zahid MN, et al.. (2012) Mutations that alter use of hepatitis C virus cell entry factors mediate escape from neutralizing antibodies. Gastroenterology 143: : 223–233 e229.

35. KeckZY, XiaJ, WangY, WangW, KreyT, et al. (2012) Human monoclonal antibodies to a novel cluster of conformational epitopes on HCV E2 with resistance to neutralization escape in a genotype 2a isolate. PLoS Pathog 8: e1002653.

36. KoutsoudakisG, KaulA, SteinmannE, KallisS, LohmannV, et al. (2006) Characterization of the early steps of hepatitis C virus infection by using luciferase reporter viruses. J Virol 80: 5308–5320.

37. PietschmannT, KaulA, KoutsoudakisG, ShavinskayaA, KallisS, et al. (2006) Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc Natl Acad Sci USA 103: 7408–7413.

38. WakitaT, PietschmannT, KatoT, DateT, MiyamotoM, et al. (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11: 791–796.

39. ZhuH, Wong-StaalF, LeeH, SyderA, McKelvyJ, et al. (2012) Evaluation of ITX 5061, a scavenger receptor B1 antagonist: resistance selection and activity in combination with other hepatitis C virus antivirals. J Infect Dis 205: 656–662.

40. ScheelTK, GottweinJM, MikkelsenLS, JensenTB, BukhJ (2011) Recombinant HCV variants with NS5A from genotypes 1–7 have different sensitivities to an NS5A inhibitor but not interferon-alpha. Gastroenterology 140: 1032–1042.

41. ZeiselMB, KoutsoudakisG, SchnoberEK, HaberstrohA, BlumHE, et al. (2007) Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81. Hepatology 46: 1722–1731.

42. KuonenF, TouvreyC, LaurentJ, RueggC (2010) Fc block treatment, dead cells exclusion, and cell aggregates discrimination concur to prevent phenotypical artifacts in the analysis of subpopulations of tumor-infiltrating CD11b(+) myelomonocytic cells. Cytometry A 77: 1082–1090.

43. SainzBJr, ChisariFV (2006) Production of infectious hepatitis C virus by well-differentiated, growth-arrested human hepatoma-derived cells. J Virol 80: 10253–10257.

44. PietschmannT, ZayasM, MeulemanP, LongG, AppelN, et al. (2009) Production of infectious genotype 1b virus particles in cell culture and impairment by replication enhancing mutations. PLoS Pathog 5: e1000475.

45. PawlotskyJM (2011) Treatment failure and resistance with direct-acting antiviral drugs against hepatitis C virus. Hepatology 53: 1742–1751.

46. GottweinJM, ScheelTK, JensenTB, LademannJB, PrentoeJC, et al. (2009) Development and characterization of hepatitis C virus genotype 1–7 cell culture systems: role of CD81 and scavenger receptor class B type I and effect of antiviral drugs. Hepatology 49: 364–377.

47. Bauhofer O, Ruggieri A, Schmid B, Schirmacher P, Bartenschlager R (2012) Persistence of HCV in quiescent hepatic cells under conditions of an interferon-induced antiviral response. Gastroenterology 143: : 429–438 e428.

48. LenzO, VerbinnenT, LinTI, VijgenL, CummingsMD, et al. (2010) In vitro resistance profile of the hepatitis C virus NS3/4A protease inhibitor TMC435. Antimicrob Agents Chemother 54: 1878–1887.

49. BartoliniB, GiombiniE, ZaccaroP, SelleriM, RozeraG, et al. (2013) Extent of HCV NS3 protease variability and resistance-associated mutations assessed by next generation sequencing in HCV monoinfected and HIV/HCV coinfected patients. Virus Res 177: 205–208.

50. GroveJ, NielsenS, ZhongJ, BassendineMF, DrummerHE, et al. (2008) Identification of a residue in hepatitis C virus E2 glycoprotein that determines scavenger receptor BI and CD81 receptor dependency and sensitivity to neutralizing antibodies. J Virol 82: 12020–12029.

51. PawlotskyJM (2013) NS5A inhibitors in the treatment of hepatitis C. J Hepatol 59: 375–382.

52. LeeC, MaH, HangJQ, LevequeV, SklanEH, et al. (2011) The hepatitis C virus NS5A inhibitor (BMS-790052) alters the subcellular localization of the NS5A non-structural viral protein. Virology 414: 10–18.

53. SigalA, KimJT, BalazsAB, DekelE, MayoA, et al. (2011) Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477: 95–98.

54. AbelaIA, BerlingerL, SchanzM, ReynellL, GunthardHF, et al. (2012) Cell-cell transmission enables HIV-1 to evade inhibition by potent CD4bs directed antibodies. PLoS Pathog 8: e1002634.

55. YanH, ZhongG, XuG, HeW, JingZ, et al. (2012) Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 1: e00049.

56. HaidS, GretheC, DillMT, HeimM, KaderaliL, et al. (2014) Isolate-dependent use of Claudins for cell entry by hepatitis C virus. Hepatology 59: 24–34.

57. FofanaI, ZonaL, ThumannC, HeydmannL, DurandSC, et al. (2013) Functional analysis of claudin-6 and claudin-9 as entry factors for hepatitis C virus infection of human hepatocytes by using monoclonal antibodies. J Virol 87: 10405–10410.

58. MassonD, KosekiM, IshibashiM, LarsonCJ, MillerSG, et al. (2009) Increased HDL cholesterol and apoA-I in humans and mice treated with a novel SR-BI inhibitor. Arterioscler Thromb Vasc Biol 29: 2054–2060.

59. CataldoVD, GibbonsDL, Perez-SolerR, Quintas-CardamaA (2011) Treatment of non-small-cell lung cancer with erlotinib or gefitinib. N Engl J Med 364: 947–955.

60. ShiN, HiragaN, ImamuraM, HayesCN, ZhangY, et al. (2013) Combination therapies with NS5A, NS3 and NS5B inhibitors on different genotypes of hepatitis C virus in human hepatocyte chimeric mice. Gut 62: 1055–1061.

61. SulkowskiMS, KangM, MatiningR, WylesD, JohnsonVA, et al. (2014) Safety and antiviral activity of the HCV entry inhibitor ITX5061 in treatment-naive HCV-infected adults: a randomized, double-blind, phase 1b study. J Infect Dis 209: 658–667.

62. TarrAW, LafayeP, MeredithL, Damier-PiolleL, UrbanowiczRA, et al. (2013) An alpaca nanobody inhibits hepatitis C virus entry and cell-to-cell transmission. Hepatology 58: 932–939.

63. NathanC (2012) Fresh approaches to anti-infective therapies. Sci Transl Med 4: 140sr142.

64. FofanaI, JilgN, ChungRT, BaumertTF (2014) Entry inhibitors and future treatment of hepatitis C. Antiviral Res 104: 136–142.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#