Cathepsin-L Can Resist Lysis by Human Serum in
The interplay among host innate immunity and resistance mechanisms in African trypanosomes has a major impact on the host range of these tsetse-fly transmitted parasites, defining their ability to cause disease in humans. A genome-scale RNAi screen identified a highly restricted set of four genes that sensitise trypanosomes to human serum: those encoding the haptoglobin-haemoglobin receptor, a predicted trans-membrane channel, a lysosomal membrane-protein and the cysteine peptidase inhibitor. An analysis of the cysteine peptidases revealed cathepsin-L as the protease regulated by the inhibitor – and with the capacity to render the parasite resistant to lysis by human serum. These findings emphasise the importance of parasite factors for the delivery and stability of host toxins. They also shed light on the control of proteolysis by parasites and potential unanticipated consequences of therapies that target the parasite proteases.
Vyšlo v časopise:
Cathepsin-L Can Resist Lysis by Human Serum in. PLoS Pathog 10(5): e32767. doi:10.1371/journal.ppat.1004130
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004130
Souhrn
The interplay among host innate immunity and resistance mechanisms in African trypanosomes has a major impact on the host range of these tsetse-fly transmitted parasites, defining their ability to cause disease in humans. A genome-scale RNAi screen identified a highly restricted set of four genes that sensitise trypanosomes to human serum: those encoding the haptoglobin-haemoglobin receptor, a predicted trans-membrane channel, a lysosomal membrane-protein and the cysteine peptidase inhibitor. An analysis of the cysteine peptidases revealed cathepsin-L as the protease regulated by the inhibitor – and with the capacity to render the parasite resistant to lysis by human serum. These findings emphasise the importance of parasite factors for the delivery and stability of host toxins. They also shed light on the control of proteolysis by parasites and potential unanticipated consequences of therapies that target the parasite proteases.
Zdroje
1. VanhollebekeB, PaysE (2010) The trypanolytic factor of human serum: many ways to enter the parasite, a single way to kill. Mol Microbiol 76: 806–814.
2. StephensNA, HajdukSL (2011) Endosomal localization of the serum resistance-associated protein in African trypanosomes confers human infectivity. Eukaryot Cell 10: 1023–1033.
3. JacksonAP, SandersM, BerryA, McQuillanJ, AslettMA, et al. (2010) The genome sequence of Trypanosoma brucei gambiense, causative agent of chronic human african trypanosomiasis. PLoS Negl Trop Dis 4: e658.
4. SimarroPP, DiarraA, Ruiz PostigoJA, FrancoJR, JanninJG (2011) The human African trypanosomiasis control and surveillance programme of the World Health Organization 2000–2009: the way forward. PLoS Negl Trop Dis 5: e1007.
5. HajdukSL, MooreDR, VasudevacharyaJ, SiqueiraH, TorriAF, et al. (1989) Lysis of Trypanosoma brucei by a toxic subspecies of human high density lipoprotein. J Biol Chem 264: 5210–5217.
6. RifkinMR (1978) Identification of the trypanocidal factor in normal human serum: high density lipoprotein. Proc Natl Acad Sci U S A 75: 3450–3454.
7. RaperJ, FungR, GhisoJ, NussenzweigV, TomlinsonS (1999) Characterization of a novel trypanosome lytic factor from human serum. Infect Immun 67: 1910–1916.
8. TomlinsonS, JansenAM, KoudinovA, GhisoJA, Choi-MiuraNH, et al. (1995) High-density-lipoprotein-independent killing of Trypanosoma brucei by human serum. Mol Biochem Parasitol 70: 131–138.
9. VanhammeL, Paturiaux-HanocqF, PoelvoordeP, NolanDP, LinsL, et al. (2003) Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature 422: 83–87.
10. BullardW, KieftR, CapewellP, VeitchNJ, MacleodA, et al. (2012) Haptoglobin-hemoglobin receptor independent killing of African trypanosomes by human serum and trypanosome lytic factors. Virulence 3: 72–76.
11. VanhollebekeB, De MuylderG, NielsenMJ, PaysA, TebabiP, et al. (2008) A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science 320: 677–681.
12. Molina-PortelaMP, LugliEB, Recio-PintoE, RaperJ (2005) Trypanosome lytic factor, a subclass of high-density lipoprotein, forms cation-selective pores in membranes. Mol Biochem Parasitol 144: 218–226.
13. Perez-MorgaD, VanhollebekeB, Paturiaux-HanocqF, NolanDP, LinsL, et al. (2005) Apolipoprotein L-I promotes trypanosome lysis by forming pores in lysosomal membranes. Science 309: 469–472.
14. KieftR, CapewellP, TurnerCM, VeitchNJ, MacLeodA, et al. (2010) Mechanism of Trypanosoma brucei gambiense (group 1) resistance to human trypanosome lytic factor. Proc Natl Acad Sci U S A 107: 16137–16141.
15. DeJesusE, KieftR, AlbrightB, StephensNA, HajdukSL (2013) A single amino acid substitution in the group 1 Trypanosoma brucei gambiense haptoglobin-hemoglobin receptor abolishes TLF-1 binding. PLoS Pathog 9: e1003317.
16. SymulaRE, BeadellJS, SistromM, AgbebakunK, BalmerO, et al. (2012) Trypanosoma brucei gambiense group 1 is distinguished by a unique amino acid substitution in the HpHb receptor implicated in human serum resistance. PLoS Negl Trop Dis 6: e1728.
17. XongHV, VanhammeL, ChamekhM, ChimfwembeCE, Van Den AbbeeleJ, et al. (1998) A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell 95: 839–846.
18. CapewellP, ClucasC, DejesusE, KieftR, HajdukS, et al. (2013) The TgsGP gene is essential for resistance to human serum in Trypanosoma brucei gambiense. PLoS Pathog 9: e1003686.
19. UzureauP, UzureauS, LecordierL, FontaineF, TebabiP, et al. (2013) Mechanism of Trypanosoma brucei gambiense resistance to human serum. Nature 501: 430–4.
20. PeckRF, ShiflettAM, SchwartzKJ, McCannA, HajdukSL, et al. (2008) The LAMP-like protein p67 plays an essential role in the lysosome of African trypanosomes. Mol Microbiol 68: 933–946.
21. HagerKM, PierceMA, MooreDR, TytlerEM, EskoJD, et al. (1994) Endocytosis of a cytotoxic human high density lipoprotein results in disruption of acidic intracellular vesicles and subsequent killing of African trypanosomes. J Cell Biol 126: 155–167.
22. CapewellP, VeitchNJ, TurnerCM, RaperJ, BerrimanM, et al. (2011) Differences between Trypanosoma brucei gambiense groups 1 and 2 in their resistance to killing by trypanolytic factor 1. PLoS Negl Trop Dis 5: e1287.
23. BerberofM, Perez-MorgaD, PaysE (2001) A receptor-like flagellar pocket glycoprotein specific to Trypanosoma brucei gambiense. Mol Biochem Parasitol 113: 127–138.
24. AlsfordS, TurnerDJ, ObadoSO, Sanchez-FloresA, GloverL, et al. (2011) High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res 21: 915–924.
25. AlsfordS, EckertS, BakerN, GloverL, Sanchez-FloresA, et al. (2012) High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature 482: 232–236.
26. SandersonSJ, WestropGD, ScharfsteinJ, MottramJC, CoombsGH (2003) Functional conservation of a natural cysteine peptidase inhibitor in protozoan and bacterial pathogens. FEBS Lett 542: 12–16.
27. AlpheyMS, HunterWN (2006) High-resolution complex of papain with remnants of a cysteine protease inhibitor derived from Trypanosoma brucei. Acta Crystallogr Sect F Struct Biol Cryst Commun 62: 504–508.
28. SantosCC, CoombsGH, LimaAP, MottramJC (2007) Role of the Trypanosoma brucei natural cysteine peptidase inhibitor ICP in differentiation and virulence. Mol Microbiol 66: 991–1002.
29. SteverdingD, SextonDW, WangX, GehrkeSS, WagnerGK, et al. (2012) Trypanosoma brucei: chemical evidence that cathepsin L is essential for survival and a relevant drug target. Int J Parasitol 42: 481–488.
30. CaffreyCR, HansellE, LucasKD, BrinenLS, Alvarez HernandezA, et al. (2001) Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Mol Biochem Parasitol 118: 61–73.
31. MackeyZB, O'BrienTC, GreenbaumDC, BlankRB, McKerrowJH (2004) A cathepsin B-like protease is required for host protein degradation in Trypanosoma brucei. J Biol Chem 279: 48426–48433.
32. O'BrienTC, MackeyZB, FetterRD, ChoeY, O'DonoghueAJ, et al. (2008) A parasite cysteine protease is key to host protein degradation and iron acquisition. J Biol Chem 283: 28934–28943.
33. AlsfordS, KawaharaT, GloverL, HornD (2005) Tagging a T. brucei RRNA locus improves stable transfection efficiency and circumvents inducible expression position effects. Mol Biochem Parasitol 144: 142–148.
34. EttariR, TamboriniL, AngeloIC, MicaleN, PintoA, et al. (2013) Inhibition of Rhodesain as a Novel Therapeutic Modality for Human African Trypanosomiasis. J Med Chem 56: 5637–58.
35. ThomsonR, Molina-PortelaP, MottH, CarringtonM, RaperJ (2009) Hydrodynamic gene delivery of baboon trypanosome lytic factor eliminates both animal and human-infective African trypanosomes. Proc Natl Acad Sci U S A 106: 19509–19514.
36. NkemguNJ, GrandeR, HansellE, McKerrowJH, CaffreyCR, et al. (2003) Improved trypanocidal activities of cathepsin L inhibitors. Int J Antimicrob Agents 22: 155–159.
37. ShimamuraM, HagerKM, HajdukSL (2001) The lysosomal targeting and intracellular metabolism of trypanosome lytic factor by Trypanosoma brucei brucei. Mol Biochem Parasitol 115: 227–237.
38. RedeckeL, NassK, DePonteDP, WhiteTA, RehdersD, et al. (2013) Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser. Science 339: 227–230.
39. JacobsRT, NareB, PhillipsMA (2011) State of the art in African trypanosome drug discovery. Curr Top Med Chem 11: 1255–1274.
40. GibsonW, NemetschkeL, Ndung'uJ (2010) Conserved sequence of the TgsGP gene in Group 1 Trypanosoma brucei gambiense. Infect Genet Evol 10: 453–458.
41. RazB, ItenM, Grether-BuhlerY, KaminskyR, BrunR (1997) The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T. b. rhodesiense and T. b. gambiense) in vitro. Acta Trop 68: 139–147.
42. SinghPK, TackBF, McCrayPBJr, WelshMJ (2000) Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. Am J Physiol Lung Cell Mol Physiol 279: L799–805.
43. BakerN, AlsfordS, HornD (2011) Genome-wide RNAi screens in African trypanosomes identify the nifurtimox activator NTR and the eflornithine transporter AAT6. Mol Biochem Parasitol 176: 55–57.
44. LangmeadB, TrapnellC, PopM, SalzbergSL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25.
45. LiH, HandsakerB, WysokerA, FennellT, RuanJ, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.
46. AlsfordS, HornD (2008) Single-locus targeting constructs for reliable regulated RNAi and transgene expression in Trypanosoma brucei. Mol Biochem Parasitol 161: 76–79.
47. RedmondS, VadiveluJ, FieldMC (2003) RNAit: an automated web-based tool for the selection of RNAi targets in Trypanosoma brucei. Mol Biochem Parasitol 128: 115–118.
48. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, et al.. (1998) Current Protocols in Molecular Biology. New York: John Wiley and Sons, Inc.
49. BrenndorferM, BoshartM (2010) Selection of reference genes for mRNA quantification in Trypanosoma brucei. Mol Biochem Parasitol 172: 52–55.
50. LivakKJ, SchmittgenTD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 5
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Venus Kinase Receptors Control Reproduction in the Platyhelminth Parasite
- Dual-Site Phosphorylation of the Control of Virulence Regulator Impacts Group A Streptococcal Global Gene Expression and Pathogenesis
- Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Ion Channel Activity Promotes Virus Fitness and Pathogenesis
- High-Efficiency Targeted Editing of Large Viral Genomes by RNA-Guided Nucleases