Different Modes of Retrovirus Restriction by Human APOBEC3A and APOBEC3G
APOBEC3 genes are part of the host's arsenal against virus infections. Humans have 7 APOBEC3 genes and determining how each specifically functions to inhibit retroviruses like HIV is complicated, because all 7 can be produced in a given cell type or tissue. This is important, because some viruses make their own factors, such as the HIV Vif protein, that block the anti-viral activity of APOBEC3 proteins. Moreover, there is interest in developing anti-viral therapeutics that enhance the action of APOBEC3 proteins. To overcome this limitation, we made transgenic mice that express two of the human proteins, APOBEC3A and APOBEC3G in mice that do not express their own APOBEC3. These mice were able to effectively block infection by several mouse retroviruses. Moreover, we found that APOBEC3A and APOBEC3G used different mechanisms to block infection in vivo. These transgenic mice have the potential to increase our understanding of how the human proteins function to restrict virus infection in vivo and should be useful for the development of therapeutics that enhance APOBEC3 proteins' antiviral function.
Vyšlo v časopise:
Different Modes of Retrovirus Restriction by Human APOBEC3A and APOBEC3G. PLoS Pathog 10(5): e32767. doi:10.1371/journal.ppat.1004145
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004145
Souhrn
APOBEC3 genes are part of the host's arsenal against virus infections. Humans have 7 APOBEC3 genes and determining how each specifically functions to inhibit retroviruses like HIV is complicated, because all 7 can be produced in a given cell type or tissue. This is important, because some viruses make their own factors, such as the HIV Vif protein, that block the anti-viral activity of APOBEC3 proteins. Moreover, there is interest in developing anti-viral therapeutics that enhance the action of APOBEC3 proteins. To overcome this limitation, we made transgenic mice that express two of the human proteins, APOBEC3A and APOBEC3G in mice that do not express their own APOBEC3. These mice were able to effectively block infection by several mouse retroviruses. Moreover, we found that APOBEC3A and APOBEC3G used different mechanisms to block infection in vivo. These transgenic mice have the potential to increase our understanding of how the human proteins function to restrict virus infection in vivo and should be useful for the development of therapeutics that enhance APOBEC3 proteins' antiviral function.
Zdroje
1. ZhengYH, JeangKT, TokunagaK (2012) Host restriction factors in retroviral infection: promises in virus-host interaction. Retrovirology 9: 112.
2. DuggalNK, EmermanM (2012) Evolutionary conflicts between viruses and restriction factors shape immunity. Nat Rev Immunol 12: 687–695.
3. KoTP, LinJJ, HuCY, HsuYH, WangAH, et al. (2003) Crystal structure of yeast cytosine deaminase. Insights into enzyme mechanism and evolution. J Biol Chem 278: 19111–19117.
4. BishopKN, HolmesRK, SheehyAM, MalimMH (2004) APOBEC-mediated editing of viral RNA. Science 305: 645–645.
5. MangeatB, TurelliP, CaronG, FriedliM, PerrinL, et al. (2003) Broad antiretroviral defense by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424: 99–103.
6. HarrisRS, SheehyAM, CraigHM, MalimMH, NeubergerMS (2003) DNA deamination: not just a trigger for antibody diversification but also a mechanism for defense against retroviruses. Nat Immunol 4: 641–643.
7. BishopKN, HolmesRK, SheehyAM, DavidsonNO, ChoSJ, et al. (2004) Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr Biol 14: 1392–1396.
8. BealeRC, Petersen-MahrtSK, WattIN, HarrisRS, RadaC, et al. (2004) Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. J Mol Biol 337: 585–596.
9. BishopKN, VermaM, KimEY, WolinskySM, MalimMH (2008) APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog 4: e1000231.
10. IwataniY, ChanDS, WangF, MaynardKS, SugiuraW, et al. (2007) Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucl Acids Res 35: 7096–7108.
11. WangX, AoZ, ChenL, KobingerG, PengJ, et al. (2012) The cellular antiviral protein APOBEC3G interacts with HIV-1 reverse transcriptase and inhibits its function during viral replication. J Virol 86: 3777–3786.
12. SheehyAM, GaddisNC, MalimMH (2003) The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9: 1404–1407.
13. StopakK, de NoronhaC, YonemotoW, GreeneWC (2003) HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell 12: 591–601.
14. WiegandHL, DoehleBP, BogerdHP, CullenBR (2004) A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J 23: 2451–2458.
15. DesimmieBA, Delviks-FrankenberrryKA, BurdickRC, QiD, IzumiT, et al. (2014) Multiple APOBEC3 Restriction Factors for HIV-1 and One Vif to Rule Them All. J Mol Biol 426: 1220–1245.
16. SchrofelbauerB, ChenD, LandauNR (2004) A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc Natl Acad Sci USA 101: 3927–3932.
17. MarianiR, ChenD, SchrofelbauerB, NavarroF, KonigR, et al. (2003) Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114: 21–31.
18. BogerdHP, WiegandHL, DoehleBP, LuedersKK, CullenBR (2006) APOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells. Nucl Acids Res 34: 89–95.
19. MuckenfussH, HamdorfM, HeldU, PerkovicM, LowerJ, et al. (2006) APOBEC3 proteins inhibit human LINE-1 retrotransposition. J Biol Chem 281: 22161–22172.
20. ChenH, LilleyCE, YuQ, LeeDV, ChouJ, et al. (2006) APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons. Curr Biol 16: 480–485.
21. PengG, Greenwell-WildT, NaresS, JinW, LeiKJ, et al. (2007) Myeloid differentiation and susceptibility to HIV-1 are linked to APOBEC3 expression. Blood 110: 393–400.
22. AguiarRS, LovsinN, TanuriA, PeterlinBM (2008) Vpr.A3A chimera inhibits HIV replication. J Biol Chem 283: 2518–2525.
23. KoningFA, GoujonC, BaubyH, MalimMH (2011) Target cell-mediated editing of HIV-1 cDNA by APOBEC3 proteins in human macrophages. J Virol 85: 13448–13452.
24. BergerG, DurandS, FargierG, NguyenXN, CordeilS, et al. (2011) APOBEC3A is a specific inhibitor of the early phases of HIV-1 infection in myeloid cells. PLoS Pathog 7: e1002221.
25. OomsM, KrikoniA, KressAK, SimonV, MunkC (2012) APOBEC3A, APOBEC3B, and APOBEC3H haplotype 2 restrict human T-lymphotropic virus type 1. J Virol 86: 6097–6108.
26. ThielenBK, McNevinJP, McElrathMJ, HuntBV, KleinKC, et al. (2010) Innate immune signaling induces high levels of TC-specific deaminase activity in primary monocyte-derived cells through expression of APOBEC3A isoforms. J Biol Chem 285: 27753–27766.
27. RibeiroAC, Maia e SilvaA, Santa-MartaM, PomboA, Moniz-PereiraJ, et al. (2005) Functional analysis of Vif protein shows less restriction of human immunodeficiency virus type 2 by APOBEC3G. J Virol 79: 823–833.
28. JonssonSR, LaRueRS, StengleinMD, FahrenkrugSC, AndresdottirV, et al. (2007) The restriction of zoonotic PERV transmission by human APOBEC3G. PLoS One 2: e893.
29. LeeJ, ChoiJY, LeeHJ, KimKC, ChoiBS, et al. (2011) Repression of porcine endogenous retrovirus infection by human APOBEC3 proteins. Biochem Biophys Res Commun 407: 266–270.
30. GroomHC, YapMW, GalaoRP, NeilSJ, BishopKN (2010) Susceptibility of xenotropic murine leukemia virus-related virus (XMRV) to retroviral restriction factors. Proc Natl Acad Sci USA 107: 5166–5171.
31. TakedaE, Tsuji-KawaharaS, SakamotoM, LangloisMA, NeubergerMS, et al. (2008) Mouse APOBEC3 restricts friend leukemia virus infection and pathogenesis in vivo. J Virol 82: 10998–11008.
32. LowA, OkeomaCM, LovsinN, de las HerasM, TaylorTH, et al. (2009) Enhanced replication and pathogenesis of Moloney murine leukemia virus in mice defective in the murine APOBEC3 gene. Virol 385: 455–463.
33. OkeomaCM, LovsinN, PeterlinBM, RossSR (2007) APOBEC3 inhibits mouse mammary tumour virus replication in vivo. Nature 445: 927–930.
34. NarvaizaI, LinfestyDC, GreenerBN, HakataY, PintelDJ, et al. (2009) Deaminase-independent inhibition of parvoviruses by the APOBEC3A cytidine deaminase. PLoS Pathog 5: e1000439.
35. TurelliP, MangeatB, JostS, VianinS, TronoD (2004) Inhibition of hepatitis B virus replication by APOBEC3G. Science 303: 1829.
36. NguyenDH, GummuluruS, HuJ (2007) Deamination-independent inhibition of hepatitis B virus reverse transcription by APOBEC3G. J Virol 81: 4465–4472.
37. BonvinM, AchermannF, GreeveI, StrokaD, KeoghA, et al. (2006) Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication. Hepatology 43: 1364–1374.
38. VartanianJP, GuetardD, HenryM, Wain-HobsonS (2008) Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions. Science 320: 230–233.
39. SuspeneR, AynaudMM, KochS, PasdeloupD, LabetoulleM, et al. (2011) Genetic editing of herpes simplex virus 1 and Epstein-Barr herpesvirus genomes by human APOBEC3 cytidine deaminases in culture and in vivo. J Virol 85: 7594–7602.
40. CullenBR (2006) Role and mechanism of action of the APOBEC3 family of antiretroviral resistance factors. J Virol 80: 1067–1076.
41. OkeomaCM, PetersenJ, RossSR (2009) Expression of murine APOBEC3 alleles in different mouse strains and their effect on mouse mammary tumor virus infection. J Virol 83: 3029–3038.
42. OkeomaCM, LowA, BailisW, FanHY, PeterlinBM, et al. (2009) Induction of APOBEC3 in vivo causes increased restriction of retrovirus infection. J Virol 83: 3486–3495.
43. OkeomaCM, HuegelAL, LingappaJ, FeldmanMD, RossSR (2010) APOBEC3 proteins expressed in mammary epithelial cells are packaged into retroviruses and can restrict transmission of milk-borne virions. Cell Host Microbe 8: 534–543.
44. SantiagoML, MontanoM, BenitezR, MesserRJ, YonemotoW, et al. (2008) Apobec3 encodes Rfv3, a gene influencing neutralizing antibody control of retrovirus infection. Science 321: 1343–1346.
45. LangloisMA, KemmerichK, RadaC, NeubergerMS (2009) The AKV murine leukemia virus is restricted and hypermutated by mouse APOBEC3. J Virol 83: 11550–11559.
46. Sanchez-MartinezS, AloiaAL, HarvinD, MirroJ, GorelickRJ, et al. (2012) Studies on the restriction of murine leukemia viruses by mouse APOBEC3. PLoS ONE 7: e38190.
47. MacMillanAL, KohliRM, RossSR (2013) APOBEC3 inhibition of mouse mammary tumor virus infection: the role of cytidine deamination versus inhibition of reverse transcription. J Virol 87: 4808–4817.
48. RulliSJJr, MirroJ, HillSA, LloydP, GorelickRJ, et al. (2008) Interactions of murine APOBEC3 and human APOBEC3G with murine leukemia viruses. J Virol 82: 6566–6575.
49. HarrisRS, BishopKN, SheehyAM, CraigHM, Petersen-MahrtSK, et al. (2003) DNA deamination mediates innate immunity to retroviral infection. Cell 113: 803–809.
50. KobayashiM, Takaori-KondoA, ShindoK, AbuduA, FukunagaK, et al. (2004) APOBEC3G targets specific virus species. J Virol 78: 8238–8244.
51. Goila-GaurR, KhanMA, MiyagiE, KaoS, StrebelK (2007) Targeting APOBEC3A to the viral nucleoprotein complex confers antiviral activity. Retrovirology 4: 61.
52. RulliK, LenzJ, LevyLS (2002) Disruption of hematopoiesis and thymopoiesis in the early premalignant stages of infection with SL3-3 murine leukemia virus. J Virol 76: 2363–2374.
53. ArdavinC, FerreroI, AzcoitiaI, AnjuereF, DiggelmanH, et al. (1999) B cell response after MMTV infection: extrafollicular plasmablasts represent the main infected population and can transmit viral infection. J Immunol 162: 2538–2545.
54. DzurisJL, GolovkinaTV, RossSR (1997) Both T and B cells shed infectious mouse mammary tumor virus. J Virol 71: 6044–6048.
55. FinstadSL, RosenbergN, LevyLS (2007) Diminished potential for B-lymphoid differentiation after murine leukemia virus infection in vivo and in EML hematopoietic progenitor cells. J Virol 81: 7274–7279.
56. CourregesMC, BurzynD, NepomnaschyI, PiazzonI, RossSR (2007) Critical role of dendritic cells in mouse mammary tumor virus in vivo infection. J Virol 81: 3769–3777.
57. BalkowS, KruxF, LoserK, BeckerJU, GrabbeS, et al. (2007) Friend retrovirus infection of myeloid dendritic cells impairs maturation, prolongs contact to naive T cells, and favors expansion of regulatory T cells. Blood 110: 3949–3958.
58. StavrouS, NittaT, KotlaS, HaD, NagashimaK, et al. (2013) Murine leukemia virus glycosylated Gag blocks apolipoprotein B editing complex 3 and cytosolic sensor access to the reverse transcription complex. Proc Natl Acad Sci USA 110: 9078–9083.
59. NewmanEN, HolmesRK, CraigHM, KleinKC, LingappaJR, et al. (2005) Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity. Curr Biol 15: 166–170.
60. BishopKN, HolmesRK, MalimMH (2006) Antiviral potency of APOBEC proteins does not correlate with cytidine deamination. J Virol 80: 8450–8458.
61. HolmesRK, KoningFA, BishopKN, MalimMH (2007) APOBEC3F can inhibit the accumulation of HIV-1 reverse transcription products in the absence of hypermutation: Comparisons with APOBEC3G. J Biol Chem 282: 2587–2595.
62. HarelJ, RassartE, JolicoeurP (1981) Cell cycle dependence of synthesis of unintegrated viral DNA in mouse cells newly infected with murine leukemia virus. Virol 110: 202–207.
63. RossSR (1997) Mouse mammary tumor virus and the immune system. Adv Pharmacol 39: 21–46.
64. SzymczakAL, VignaliDA (2005) Development of 2A peptide-based strategies in the design of multicistronic vectors. Expert Opin Biol Ther 5: 627–638.
65. AnP, BleiberG, DuggalP, NelsonG, MayM, et al. (2004) APOBEC3G genetic variants and their influence on the progression to AIDS. J Virol 78: 11070–11076.
66. ReddyK, WinklerCA, WernerL, MlisanaK, Abdool KarimSS, et al. (2010) APOBEC3G expression is dysregulated in primary HIV-1 infection and polymorphic variants influence CD4+ T-cell counts and plasma viral load. AIDS 24: 195–204.
67. BizinotoMC, LealE, DiazRS, JaniniLM (2011) Loci polymorphisms of the APOBEC3G gene in HIV type 1-infected Brazilians. AIDS Res Hum Retroviruses 27: 137–141.
68. BrowneEP, LittmanDR (2008) Species-specific restriction of apobec3-mediated hypermutation. J Virol 82: 1305–1313.
69. RulliSJJr, MirroJ, HillSA, LloydP, GorelickRJ, et al. (2008) Interactions of murine APOBEC3 and human APOBEC3G with murine leukemia viruses. J Virol 82: 6566–6575.
70. SheehyAM, GaddisNC, MalimMH (2003) The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9: 1404–1407.
71. StopakK, de NoronhaC, YonemotoW, GreeneWC (2003) HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell 12: 591–601.
72. KriskoJF, Martinez-TorresF, FosterJL, GarciaJV (2013) HIV restriction by APOBEC3 in humanized mice. PLoS Pathog 9: e1003242.
73. TurelliP, Liagre-QuazzolaA, MangeatB, VerpS, JostS, et al. (2008) APOBEC3-independent interferon-induced viral clearance in hepatitis B virus transgenic mice. J Virol 82: 6585–6590.
74. LandryS, NarvaizaI, LinfestyDC, WeitzmanMD (2011) APOBEC3A can activate the DNA damage response and cause cell-cycle arrest. EMBO Rep 12: 444–450.
75. SuspeneR, AynaudMM, GuetardD, HenryM, EckhoffG, et al. (2011) Somatic hypermutation of human mitochondrial and nuclear DNA by APOBEC3 cytidine deaminases, a pathway for DNA catabolism. Proc Natl Acad Sci USA 108: 4858–4863.
76. LutzMB, KukutschN, OgilvieAL, RossnerS, KochF, et al. (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223: 77–92.
77. FanH, ChuteH, ChaoE, FeuermanM (1983) Construction and characterization of Moloney murine leukemia virus mutants unable to synthesize glycosylated gag polyprotein. Proc Natl Acad Sci USA 80: 5965–5969.
78. PortisJL, McAteeFJ, KaymanSC (1992) Infectivity of retroviral DNA in vivo. J Acquir Immune Defic Syndr 5: 1272–1273.
79. RassaJC, MeyersJL, ZhangY, KudaravalliR, RossSR (2002) Murine retroviruses activate B cells via interaction with Toll-like receptor 4. Proc Natl Acad Sci USA 99: 2281–2286.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 5
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Venus Kinase Receptors Control Reproduction in the Platyhelminth Parasite
- Dual-Site Phosphorylation of the Control of Virulence Regulator Impacts Group A Streptococcal Global Gene Expression and Pathogenesis
- Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Ion Channel Activity Promotes Virus Fitness and Pathogenesis
- High-Efficiency Targeted Editing of Large Viral Genomes by RNA-Guided Nucleases