New Insights into Rotavirus Entry Machinery: Stabilization of Rotavirus Spike Conformation Is Independent of Trypsin Cleavage
Rotavirus is responsible for more than 400,000 annual infant deaths worldwide. Its viral particle bears 60 protuberant spikes that constitute the machinery responsible for virus binding to and entry into the host cell. For efficient infection, the protein molecules that build the spike must be cleaved. Despite the importance of this activation step, the nature of the changes induced in the spike structure is unknown. According to the current hypothesis, the uncleaved spike is very flexible, and activation stabilizes the spike in an entry-competent conformation. Here we used distinct electron microscopy techniques to determine the structure of the uncleaved particle in two model rotavirus strains. Our results provide a complete structure of the uncleaved spike and demonstrate that cleaved and uncleaved spikes have similar conformations, indicating that proteolytic processing is not involved in stabilization of the spike. We suggest that spike processing is important for infection since it is necessary to allow the spike domain movements involved in rotavirus entry.
Vyšlo v časopise:
New Insights into Rotavirus Entry Machinery: Stabilization of Rotavirus Spike Conformation Is Independent of Trypsin Cleavage. PLoS Pathog 10(5): e32767. doi:10.1371/journal.ppat.1004157
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004157
Souhrn
Rotavirus is responsible for more than 400,000 annual infant deaths worldwide. Its viral particle bears 60 protuberant spikes that constitute the machinery responsible for virus binding to and entry into the host cell. For efficient infection, the protein molecules that build the spike must be cleaved. Despite the importance of this activation step, the nature of the changes induced in the spike structure is unknown. According to the current hypothesis, the uncleaved spike is very flexible, and activation stabilizes the spike in an entry-competent conformation. Here we used distinct electron microscopy techniques to determine the structure of the uncleaved particle in two model rotavirus strains. Our results provide a complete structure of the uncleaved spike and demonstrate that cleaved and uncleaved spikes have similar conformations, indicating that proteolytic processing is not involved in stabilization of the spike. We suggest that spike processing is important for infection since it is necessary to allow the spike domain movements involved in rotavirus entry.
Zdroje
1. MarshM, HeleniusA (2006) Virus entry: open sesame. Cell 124: 729–740.
2. Estes MK, Greenberg HB (2013) Rotaviruses. In: Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA et al.., editors. Fields Virology. 6th ed. Philadelphia: Lippincott Williams & Wilkins.
3. KotloffKL, NataroJP, BlackwelderWC, NasrinD, FaragTH, et al. (2013) Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382: 209–222.
4. ParasharUD, GibsonCJ, BresseJS, GlassRI (2006) Rotavirus and severe childhood diarrhea. Emerg Infect Dis 12: 304–306.
5. McClainB, SettembreE, TempleBR, BellamyAR, HarrisonSC (2010) X-ray crystal structure of the rotavirus inner capsid particle at 3.8 A resolution. J Mol Biol 397: 587–599.
6. SettembreEC, ChenJZ, DormitzerPR, GrigorieffN, HarrisonSC (2011) Atomic model of an infectious rotavirus particle. Embo J 30: 408–416.
7. EstroziLF, SettembreEC, GoretG, McClainB, ZhangX, et al. (2013) Location of the dsRNA-dependent polymerase, VP1, in rotavirus particles. J Mol Biol 425: 124–132.
8. PerizJ, CelmaC, JingB, PinkneyJN, RoyP, et al. (2013) Rotavirus mRNAS are released by transcript-specific channels in the double-layered viral capsid. Proc Natl Acad Sci U S A 110: 12042–12047.
9. MathieuM, PetitpasI, NavazaJ, LepaultJ, KohliE, et al. (2001) Atomic structure of the major capsid protein of rotavirus: implications for the architecture of the virion. Embo J 20: 1485–1497.
10. LudertJE, FengN, YuJH, BroomeRL, HoshinoY, et al. (1996) Genetic mapping indicates that VP4 is the rotavirus cell attachment protein in vitro and in vivo. J Virol 70: 487–493.
11. TraskSD, KimIS, HarrisonSC, DormitzerPR (2010) A rotavirus spike protein conformational intermediate binds lipid bilayers. J Virol 84: 1764–1770.
12. ChenJZ, SettembreEC, AokiST, ZhangX, BellamyAR, et al. (2009) Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM. Proc Natl Acad Sci U S A 106: 10644–10648.
13. ClarkSM, RothJR, ClarkML, BarnettBB, SpendloveRS (1981) Trypsin enhancement of rotavirus infectivity: mechanism of enhancement. J Virol 39: 816–822.
14. EstesMK, GrahamDY, MasonBB (1981) Proteolytic enhancement of rotavirus infectivity: molecular mechanisms. J Virol 39: 879–888.
15. AriasCF, RomeroP, AlvarezV, LopezS (1996) Trypsin activation pathway of rotavirus infectivity. J Virol 70: 5832–5839.
16. GilbertJM, GreenbergHB (1998) Cleavage of rhesus rotavirus VP4 after arginine 247 is essential for rotavirus-like particle-induced fusion from without. J Virol 72: 5323–5327.
17. DormitzerPR, NasonEB, PrasadBV, HarrisonSC (2004) Structural rearrangements in the membrane penetration protein of a non-enveloped virus. Nature 430: 1053–1058.
18. KimIS, TraskSD, BabyonyshevM, DormitzerPR, HarrisonSC (2010) Effect of mutations in VP5 hydrophobic loops on rotavirus cell entry. J Virol 84: 6200–6207.
19. WolfM, VoPT, GreenbergHB (2011) Rhesus rotavirus entry into a polarized epithelium is endocytosis dependent and involves sequential VP4 conformational changes. J Virol 85: 2492–2503.
20. YoderJD, TraskSD, VoTP, BinkaM, FengN, et al. (2009) VP5* rearranges when rotavirus uncoats. J Virol 83: 11372–11377.
21. CrawfordSE, MukherjeeSK, EstesMK, LawtonJA, ShawAL, et al. (2001) Trypsin cleavage stabilizes the rotavirus VP4 spike. J Virol 75: 6052–6061.
22. ChenDY, RamigRF (1992) Determinants of rotavirus stability and density during CsCl purification. Virology 186: 228–237.
23. PrasadBV, WangGJ, ClerxJP, ChiuW (1988) Three-dimensional structure of rotavirus. J Mol Biol 199: 269–275.
24. BohlEH, TheilKW, SaifLJ (1984) Isolation and serotyping of porcine rotaviruses and antigenic comparison with other rotaviruses. J Clin Microbiol 19: 105–111.
25. BartesaghiA, SubramaniamS (2009) Membrane protein structure determination using cryo-electron tomography and 3D image averaging. Curr Opin Struct Biol 19: 402–407.
26. FuCY, JohnsonJE (2011) Viral life cycles captured in three-dimensions with electron microscopy tomography. Curr Opin Virol 1: 125–133.
27. PesaventoJB, LawtonJA, EstesME, Venkataram PrasadBV (2001) The reversible condensation and expansion of the rotavirus genome. Proc Natl Acad Sci U S A 98: 1381–1386.
28. ScheresSH, MeleroR, ValleM, CarazoJM (2009) Averaging of electron subtomograms and random conical tilt reconstructions through likelihood optimization. Structure 17: 1563–1572.
29. DormitzerPR, GreenbergHB, HarrisonSC (2001) Proteolysis of monomeric recombinant rotavirus VP4 yields an oligomeric VP5* core. J Virol 75: 7339–7350.
30. KaljotKT, ShawRD, RubinDH, GreenbergHB (1988) Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis. J Virol 62: 1136–1144.
31. HarrisonSC (2008) Viral membrane fusion. Nat Struct Mol Biol 15: 690–698.
32. MasV, MeleroJA (2013) Entry of enveloped viruses into host cells: membrane fusion. Subcell Biochem 68: 467–487.
33. ChenJ, LeeKH, SteinhauerDA, StevensDJ, SkehelJJ, et al. (1998) Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 95: 409–417.
34. WilsonIA, SkehelJJ, WileyDC (1981) Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 289: 366–373.
35. WelchBD, LiuY, KorsCA, LeserGP, JardetzkyTS, et al. (2012) Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein. Proc Natl Acad Sci U S A 109: 16672–16677.
36. TraskSD, DormitzerPR (2006) Assembly of highly infectious rotavirus particles recoated with recombinant outer capsid proteins. J Virol 80: 11293–11304.
37. BurnsJW, ChenD, EstesMK, RamigRF (1989) Biological and immunological characterization of a simian rotavirus SA11 variant with an altered genome segment 4. Virology 169: 427–435.
38. ChenD, BurnsJW, EstesMK, RamigRF (1989) Phenotypes of rotavirus reassortants depend upon the recipient genetic background. Proc Natl Acad Sci U S A 86: 3743–3747.
39. SmallC, BarroM, BrownTL, PattonJT (2007) Genome heterogeneity of SA11 rotavirus due to reassortment with "O" agent. Virology 359: 415–424.
40. MalherbeHH, Strickland-CholmleyM (1967) Simian virus SA11 and the related O agent. Arch Gesamte Virusforsch 22: 235–245.
41. PotgieterAC, PageNA, LiebenbergJ, WrightIM, LandtO, et al. (2009) Improved strategies for sequence-independent amplification and sequencing of viral double-stranded RNA genomes. J Gen Virol 90: 1423–1432.
42. LopezS, AriasCF (1992) Simian rotavirus SA11 strains. J Virol 66: 1832.
43. MleraL, O'NeillHG, JereKC, van DijkAA (2013) Whole-genome consensus sequence analysis of a South African rotavirus SA11 sample reveals a mixed infection with two close derivatives of the SA11-H96 strain. Arch Virol 158: 1021–1030.
44. PattonJT, ChizhikovV, TaraporewalaZ, ChenD (2000) Virus replication. Methods Mol Med 34: 33–66.
45. Arnold M, Patton JT, McDonald SM (2009) Culturing, storage, and quantification of rotaviruses. Curr Protoc Microbiol Chapter 15: Unit 15C 13.
46. HeymannJB, BelnapDM (2007) Bsoft: image processing and molecular modeling for electron microscopy. J Struct Biol 157: 3–18.
47. ScheresSH, Nunez-RamirezR, SorzanoCO, CarazoJM, MarabiniR (2008) Image processing for electron microscopy single-particle analysis using XMIPP. Nat Protoc 3: 977–990.
48. PettersenEF, GoddardTD, HuangCC, CouchGS, GreenblattDM, et al. (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612.
49. ConwayJF, TrusBL, BooyFP, NewcombWW, BrownJC, et al. (1993) The effects of radiation damage on the structure of frozen hydrated HSV-1 capsids. J Struct Biol 111: 222–233.
50. MindellJA, GrigorieffN (2003) Accurate determination of local defocus and specimen tilt in electron microscopy. J Struct Biol 142: 334–347.
51. FernandezJJ, LuqueD, CastonJR, CarrascosaJL (2008) Sharpening high resolution information in single particle electron cryomicroscopy. J Struct Biol 164: 170–175.
52. KremerJR, MastronardeDN, McIntoshJR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116: 71–76.
53. FernandezJJ, LiS, CrowtherRA (2006) CTF determination and correction in electron cryotomography. Ultramicroscopy 106: 587–596.
54. AgulleiroJI, FernandezJJ (2011) Fast tomographic reconstruction on multicore computers. Bioinformatics 27: 582–583.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 5
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Venus Kinase Receptors Control Reproduction in the Platyhelminth Parasite
- Dual-Site Phosphorylation of the Control of Virulence Regulator Impacts Group A Streptococcal Global Gene Expression and Pathogenesis
- Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Ion Channel Activity Promotes Virus Fitness and Pathogenesis
- High-Efficiency Targeted Editing of Large Viral Genomes by RNA-Guided Nucleases