Circulating Pneumolysin Is a Potent Inducer of Cardiac Injury during Pneumococcal Infection
Cardiac complications frequently accompany invasive disease caused by the pathogen Streptococcus pneumoniae and are associated with significant increases in mortality, however the underlying mechanisms remain elusive. Here, we describe a new mechanism by which pneumococci in the blood stream induce elevation of circulating cardiac troponins; proteins that are markers of cardiac injury and cause inflammatory cell infiltration into the myocardium. We demonstrate that this process is mediated by the circulating pneumococcal toxin pneumolysin (PLY). We also show that antibiotic treatment can exacerbate cardiac injury and dysfunction following pneumococcal infection due to bacterial lysis and the release of PLY, which represents a further mechanistic explanation for the process of cardiac scarring and inflammation. We demonstrate that in addition to its role in inducing death of cardiac cells at high concentrations, PLY at lower (non-lytic) concentrations trigger a range of cellular events starting with cellular membrane pore-formation, substantial calcium overload which then mediates mechanical and electrical disturbance to the function of cardiac cells. Our work proposes that novel translational strategies to detect and neutralize circulating PLY during pneumococcal disease could be utilized to assess disease severity and should be targeted for prevention/treatment purposes.
Vyšlo v časopise:
Circulating Pneumolysin Is a Potent Inducer of Cardiac Injury during Pneumococcal Infection. PLoS Pathog 11(5): e32767. doi:10.1371/journal.ppat.1004836
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004836
Souhrn
Cardiac complications frequently accompany invasive disease caused by the pathogen Streptococcus pneumoniae and are associated with significant increases in mortality, however the underlying mechanisms remain elusive. Here, we describe a new mechanism by which pneumococci in the blood stream induce elevation of circulating cardiac troponins; proteins that are markers of cardiac injury and cause inflammatory cell infiltration into the myocardium. We demonstrate that this process is mediated by the circulating pneumococcal toxin pneumolysin (PLY). We also show that antibiotic treatment can exacerbate cardiac injury and dysfunction following pneumococcal infection due to bacterial lysis and the release of PLY, which represents a further mechanistic explanation for the process of cardiac scarring and inflammation. We demonstrate that in addition to its role in inducing death of cardiac cells at high concentrations, PLY at lower (non-lytic) concentrations trigger a range of cellular events starting with cellular membrane pore-formation, substantial calcium overload which then mediates mechanical and electrical disturbance to the function of cardiac cells. Our work proposes that novel translational strategies to detect and neutralize circulating PLY during pneumococcal disease could be utilized to assess disease severity and should be targeted for prevention/treatment purposes.
Zdroje
1. Ortqvist A, Hedlund J, Kalin M (2005) Streptococcus pneumoniae: epidemiology, risk factors, and clinical features. Semin Respir Crit Care Med 26: 563–574. 16388428
2. Viasus D, Garcia-Vidal C, Manresa F, Dorca J, Gudiol F, et al. (2013) Risk stratification and prognosis of acute cardiac events in hospitalized adults with community-acquired pneumonia. J Infect 66: 27–33. doi: 10.1016/j.jinf.2012.09.003 22981899
3. Corrales-Medina VF, Suh KN, Rose G, Chirinos JA, Doucette S, et al. (2011) Cardiac complications in patients with community-acquired pneumonia: a systematic review and meta-analysis of observational studies. PLoS Med 8: e1001048. doi: 10.1371/journal.pmed.1001048 21738449
4. Ramirez J, Aliberti S, Mirsaeidi M, Peyrani P, Filardo G, et al. (2008) Acute myocardial infarction in hospitalized patients with community-acquired pneumonia. Clin Infect Dis 47: 182–187. doi: 10.1086/589246 18533841
5. Corrales-Medina VF, Musher DM, Wells GA, Chirinos JA, Chen L, et al. (2012) Cardiac complications in patients with community-acquired pneumonia: incidence, timing, risk factors, and association with short-term mortality. Circulation 125: 773–781. doi: 10.1161/CIRCULATIONAHA.111.040766 22219349
6. Mandal P, Chalmers JD, Choudhury G, Akram AR, Hill AT (2011) Vascular complications are associated with poor outcome in community-acquired pneumonia. QJM 104: 489–495. doi: 10.1093/qjmed/hcq247 21217116
7. Moammar MQ, Ali MI, Mahmood NA, DeBari VA, Khan MA (2010) Cardiac troponin I levels and alveolar-arterial oxygen gradient in patients with community-acquired pneumonia. Heart Lung Circ 19: 90–92. doi: 10.1016/j.hlc.2009.08.009 19914870
8. Ahl J, Littorin N, Forsgren A, Odenholt I, Resman F, et al. (2013) High incidence of septic shock caused by Streptococcus pneumoniae serotype 3—a retrospective epidemiological study. BMC Infect Dis 13: 492. doi: 10.1186/1471-2334-13-492 24148181
9. Orsini J, Mainardi C, Muzylo E, Karki N, Cohen N, et al. (2012) Microbiological profile of organisms causing bloodstream infection in critically ill patients. J Clin Med Res 4: 371–377. doi: 10.4021/jocmr1099w 23226169
10. Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, et al. (1990) Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 113: 227–242. 2197912
11. Zanotti-Cavazzoni SL, Hollenberg SM (2009) Cardiac dysfunction in severe sepsis and septic shock. Curr Opin Crit Care 15: 392–397. doi: 10.1097/MCC.0b013e3283307a4e 19633546
12. Bessiere F, Khenifer S, Dubourg J, Durieu I, Lega JC (2013) Prognostic value of troponins in sepsis: a meta-analysis. Intensive Care Med 39: 1181–1189. doi: 10.1007/s00134-013-2902-3 23595497
13. Singanayagam A, Singanayagam A, Elder DH, Chalmers JD (2012) Is community-acquired pneumonia an independent risk factor for cardiovascular disease? Eur Respir J 39: 187–196. doi: 10.1183/09031936.00049111 21737556
14. Musher DM, Rueda AM, Kaka AS, Mapara SM (2007) The association between pneumococcal pneumonia and acute cardiac events. Clin Infect Dis 45: 158–165. 17578773
15. Paton JC, Andrew PW, Boulnois GJ, Mitchell TJ (1993) Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. Annu Rev Microbiol 47: 89–115. 7903033
16. Brown AO, Mann B, Gao G, Hankins JS, Humann J, et al. (2014) Streptococcus pneumoniae Translocates into the Myocardium and Forms Unique Microlesions That Disrupt Cardiac Function. PLoS Pathog 10: e1004383. doi: 10.1371/journal.ppat.1004383 25232870
17. Kadioglu A, Weiser JN, Paton JC, Andrew PW (2008) The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6: 288–301. doi: 10.1038/nrmicro1871 18340341
18. Kadioglu A, Gingles NA, Grattan K, Kerr A, Mitchell TJ, et al. (2000) Host cellular immune response to pneumococcal lung infection in mice. Infect Immun 68: 492–501. 10639409
19. Stringaris AK, Geisenhainer J, Bergmann F, Balshusemann C, Lee U, et al. (2002) Neurotoxicity of pneumolysin, a major pneumococcal virulence factor, involves calcium influx and depends on activation of p38 mitogen-activated protein kinase. Neurobiol Dis 11: 355–368. 12586546
20. Dogan S, Zhang Q, Pridmore AC, Mitchell TJ, Finn A, et al. (2011) Pneumolysin-induced CXCL8 production by nasopharyngeal epithelial cells is dependent on calcium flux and MAPK activation via Toll-like receptor 4. Microbes Infect 13: 65–75. doi: 10.1016/j.micinf.2010.10.003 20974276
21. Bermpohl D, Halle A, Freyer D, Dagand E, Braun JS, et al. (2005) Bacterial programmed cell death of cerebral endothelial cells involves dual death pathways. J Clin Invest 115: 1607–1615. 15902310
22. McNeela EA, Burke A, Neill DR, Baxter C, Fernandes VE, et al. (2010) Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog 6: e1001191. doi: 10.1371/journal.ppat.1001191 21085613
23. Bers DM (2000) Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res 87: 275–281. 10948060
24. Reuter H, Scholz H (1977) The regulation of the calcium conductance of cardiac muscle by adrenaline. J Physiol 264: 49–62. 839456
25. Vassalle M, Lin CI (2004) Calcium overload and cardiac function. J Biomed Sci 11: 542–565. 15316129
26. Pyrko P, Kardosh A, Liu YT, Soriano N, Xiong W, et al. (2007) Calcium-activated endoplasmic reticulum stress as a major component of tumor cell death induced by 2,5-dimethyl-celecoxib, a non-coxib analogue of celecoxib. Mol Cancer Ther 6: 1262–1275. 17431104
27. Layland J, Solaro RJ, Shah AM (2005) Regulation of cardiac contractile function by troponin I phosphorylation. Cardiovasc Res 66: 12–21. 15769444
28. Henry BD, Neill DR, Becker KA, Gore S, Bricio-Moreno L, et al. (2015) Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat Biotechnol 33: 81–88. doi: 10.1038/nbt.3037 25362245
29. Berry AM, Yother J, Briles DE, Hansman D, Paton JC (1989) Reduced virulence of a defined pneumolysin-negative mutant of Streptococcus pneumoniae. Infect Immun 57: 2037–2042. 2731982
30. Berry AM, Ogunniyi AD, Miller DC, Paton JC (1999) Comparative virulence of Streptococcus pneumoniae strains with insertion-duplication, point, and deletion mutations in the pneumolysin gene. Infect Immun 67: 981–985. 9916120
31. Wells SM, Sleeper M (2008) Cardiac troponins. Journal of Veterinary Emergency and Critical Care 18: 235–245.
32. Mahajan VS, Jarolim P (2011) How to interpret elevated cardiac troponin levels. Circulation 124: 2350–2354. doi: 10.1161/CIRCULATIONAHA.111.023697 22105197
33. Claycomb WC, Lanson NA Jr., Stallworth BS, Egeland DB, Delcarpio JB, et al. (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A 95: 2979–2984. 9501201
34. White SM, Constantin PE, Claycomb WC (2004) Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. Am J Physiol Heart Circ Physiol 286: H823–829. 14766671
35. Boyett MR, Moore M, Jewell BR, Montgomery RA, Kirby MS, et al. (1988) An improved apparatus for the optical recording of contraction of single heart cells. Pflugers Arch 413: 197–205. 3217241
36. Fillon S, Soulis K, Rajasekaran S, Benedict-Hamilton H, Radin JN, et al. (2006) Platelet-activating factor receptor and innate immunity: uptake of gram-positive bacterial cell wall into host cells and cell-specific pathophysiology. J Immunol 177: 6182–6191. 17056547
37. Paton JC, Lock RA, Lee CJ, Li JP, Berry AM, et al. (1991) Purification and immunogenicity of genetically obtained pneumolysin toxoids and their conjugation to Streptococcus pneumoniae type 19F polysaccharide. Infect Immun 59: 2297–2304. 2050399
38. Shewell LK, Harvey RM, Higgins MA, Day CJ, Hartley-Tassell LE, et al. (2014) The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity. Proc Natl Acad Sci U S A 111: E5312–5320. doi: 10.1073/pnas.1412703111 25422425
39. Sahoo SK, Kim T, Kang GB, Lee JG, Eom SH, et al. (2009) Characterization of calumenin-SERCA2 interaction in mouse cardiac sarcoplasmic reticulum. J Biol Chem 284: 31109–31121. doi: 10.1074/jbc.M109.031989 19740751
40. Wheeler-Jones CP (2005) Cell signalling in the cardiovascular system: an overview. Heart 91: 1366–1374. 16162635
41. Powers FM, Farias S, Minami H, Martin AF, Solaro RJ, et al. (1998) Cardiac myofilament protein function is altered during sepsis. J Mol Cell Cardiol 30: 967–978. 9618237
42. Wu LL, Tang C, Liu MS (2001) Altered phosphorylation and calcium sensitivity of cardiac myofibrillar proteins during sepsis. Am J Physiol Regul Integr Comp Physiol 281: R408–416. 11448842
43. Steinberg SF (2008) Structural basis of protein kinase C isoform function. Physiol Rev 88: 1341–1378. doi: 10.1152/physrev.00034.2007 18923184
44. Pyle WG, Chen Y, Hofmann PA (2003) Cardioprotection through a PKC-dependent decrease in myofilament ATPase. Am J Physiol Heart Circ Physiol 285: H1220–1228. 12763745
45. Kooij V, Zhang P, Piersma SR, Sequeira V, Boontje NM, et al. (2013) PKCalpha-specific phosphorylation of the troponin complex in human myocardium: a functional and proteomics analysis. PLoS One 8: e74847. doi: 10.1371/journal.pone.0074847 24116014
46. Way KJ, Chou E, King GL (2000) Identification of PKC-isoform-specific biological actions using pharmacological approaches. Trends Pharmacol Sci 21: 181–187. 10785652
47. Groenendyk J, Agellon LB, Michalak M (2013) Coping with endoplasmic reticulum stress in the cardiovascular system. Annu Rev Physiol 75: 49–67. doi: 10.1146/annurev-physiol-030212-183707 23020580
48. Wang J, Hu X, Jiang H (2014) ER stress-induced apoptosis: A novel therapeutic target in heart failure. Int J Cardiol.
49. Zhang Y, Xia Z, La Cour KH, Ren J (2011) Activation of Akt rescues endoplasmic reticulum stress-impaired murine cardiac contractile function via glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeation pore opening. Antioxid Redox Signal 15: 2407–2424. doi: 10.1089/ars.2010.3751 21542787
50. Zhang B, Zhang Y, La Cour KH, Richmond KL, Wang XM, et al. (2013) Mitochondrial aldehyde dehydrogenase obliterates endoplasmic reticulum stress-induced cardiac contractile dysfunction via correction of autophagy. Biochim Biophys Acta 1832: 574–584. doi: 10.1016/j.bbadis.2013.01.013 23354068
51. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, et al. (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287: 664–666. 10650002
52. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, et al. (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12: 982–995. 9531536
53. Braun JS, Sublett JE, Freyer D, Mitchell TJ, Cleveland JL, et al. (2002) Pneumococcal pneumolysin and H(2)O(2) mediate brain cell apoptosis during meningitis. J Clin Invest 109: 19–27. 11781347
54. Park CS, Cha H, Kwon EJ, Sreenivasaiah PK, Kim do H (2012) The chemical chaperone 4-phenylbutyric acid attenuates pressure-overload cardiac hypertrophy by alleviating endoplasmic reticulum stress. Biochem Biophys Res Commun 421: 578–584. doi: 10.1016/j.bbrc.2012.04.048 22525677
55. Ayala P, Montenegro J, Vivar R, Letelier A, Urroz PA, et al. (2012) Attenuation of endoplasmic reticulum stress using the chemical chaperone 4-phenylbutyric acid prevents cardiac fibrosis induced by isoproterenol. Exp Mol Pathol 92: 97–104. doi: 10.1016/j.yexmp.2011.10.012 22101259
56. Chironna M, Sallustio A, De Robertis A, Quarto M, Germinario C (2010) Case report: fulminant pneumococcal sepsis in an unvaccinated asplenic patient in Italy. Euro Surveill 15.
57. Dalla Bona E, Beltrame V, Liessi F, Sperti C (2012) Fatal pneumococcal sepsis eleven years after distal pancreatectomy with splenectomy for pancreatic cancer. JOP 13: 693–695. doi: 10.6092/1590-8577/1074 23183404
58. Iinuma Y, Hirose Y, Tanaka T, Kumagai K, Miyajima M, et al. (2007) Rapidly progressive fatal pneumococcal sepsis in adults: a report of two cases. J Infect Chemother 13: 346–349. 17982726
59. Mehta NJ, Khan IA, Gupta V, Jani K, Gowda RM, et al. (2004) Cardiac troponin I predicts myocardial dysfunction and adverse outcome in septic shock. International journal of cardiology 95: 13–17. 15159032
60. ver Elst KM, Spapen HD, Nguyen DN, Garbar C, Huyghens LP, et al. (2000) Cardiac troponins I and T are biological markers of left ventricular dysfunction in septic shock. Clin Chem 46: 650–657. 10794747
61. Ammann P, Fehr T, Minder EI, Gunter C, Bertel O (2001) Elevation of troponin I in sepsis and septic shock. Intensive Care Med 27: 965–969. 11497154
62. Spreer A, Kerstan H, Bottcher T, Gerber J, Siemer A, et al. (2003) Reduced release of pneumolysin by Streptococcus pneumoniae in vitro and in vivo after treatment with nonbacteriolytic antibiotics in comparison to ceftriaxone. Antimicrob Agents Chemother 47: 2649–2654. 12878534
63. Jedrzejas MJ (2001) Pneumococcal virulence factors: structure and function. Microbiol Mol Biol Rev 65: 187–207; first page, table of contents. 11381099
64. El-Rachkidy RG, Davies NW, Andrew PW (2008) Pneumolysin generates multiple conductance pores in the membrane of nucleated cells. Biochem Biophys Res Commun 368: 786–792. doi: 10.1016/j.bbrc.2008.01.151 18261465
65. Sonnen AF, Plitzko JM, Gilbert RJ (2014) Incomplete pneumolysin oligomers form membrane pores. Open Biol 4: 140044. doi: 10.1098/rsob.140044 24759615
66. Miragoli M, Gaudesius G, Rohr S (2006) Electrotonic modulation of cardiac impulse conduction by myofibroblasts. Circ Res 98: 801–810. 16484613
67. Beurg M, Hafidi A, Skinner L, Cowan G, Hondarrague Y, et al. (2005) The mechanism of pneumolysin-induced cochlear hair cell death in the rat. J Physiol 568: 211–227. 16051626
68. Tang J, Wang G, Liu Y, Fu Y, Chi J, et al. (2011) Cyclosporin A induces cardiomyocyte injury through calcium-sensing receptor-mediated calcium overload. Pharmazie 66: 52–57. 21391435
69. Wang Y, Goldhaber JI (2004) Return of calcium: manipulating intracellular calcium to prevent cardiac pathologies. Proc Natl Acad Sci U S A 101: 5697–5698. 15079064
70. Thandroyen FT, Morris AC, Hagler HK, Ziman B, Pai L, et al. (1991) Intracellular calcium transients and arrhythmia in isolated heart cells. Circ Res 69: 810–819. 1873874
71. Braz JC, Gregory K, Pathak A, Zhao W, Sahin B, et al. (2004) PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nat Med 10: 248–254. 14966518
72. Minamino T, Komuro I, Kitakaze M (2010) Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circ Res 107: 1071–1082. doi: 10.1161/CIRCRESAHA.110.227819 21030724
73. Palaniyandi SS, Sun L, Ferreira JC, Mochly-Rosen D (2009) Protein kinase C in heart failure: a therapeutic target? Cardiovasc Res 82: 229–239. doi: 10.1093/cvr/cvp001 19168855
74. Belmonte SL, Blaxall BC (2011) PKC-ing is believing: targeting protein kinase C in heart failure. Circ Res 109: 1320–1322. doi: 10.1161/CIRCRESAHA.111.259358 22158646
75. Neill DR, Fernandes VE, Wisby L, Haynes AR, Ferreira DM, et al. (2012) T regulatory cells control susceptibility to invasive pneumococcal pneumonia in mice. PLoS Pathog 8: e1002660. doi: 10.1371/journal.ppat.1002660 22563306
76. Morton DB (1985) Pain and laboratory animals. Nature 317: 106. 4033793
77. Abrams ST, Zhang N, Manson J, Liu T, Dart C, et al. (2013) Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med 187: 160–169. doi: 10.1164/rccm.201206-1037OC 23220920
78. Lewis R, Asplin KE, Bruce G, Dart C, Mobasheri A, et al. (2011) The role of the membrane potential in chondrocyte volume regulation. J Cell Physiol 226: 2979–2986. doi: 10.1002/jcp.22646 21328349
79. Ke L, Qi XY, Dijkhuis AJ, Chartier D, Nattel S, et al. (2008) Calpain mediates cardiac troponin degradation and contractile dysfunction in atrial fibrillation. J Mol Cell Cardiol 45: 685–693. doi: 10.1016/j.yjmcc.2008.08.012 18823990
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 5
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Human Cytomegalovirus miR-UL112-3p Targets TLR2 and Modulates the TLR2/IRAK1/NFκB Signaling Pathway
- Paradoxical Immune Responses in Non-HIV Cryptococcal Meningitis
- Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance
- Fob1 and Fob2 Proteins Are Virulence Determinants of via Facilitating Iron Uptake from Ferrioxamine