The NLRP3 Inflammasome Is a Pathogen Sensor for Invasive via Activation of α5β1 Integrin at the Macrophage-Amebae Intercellular Junction
Amebiasis caused by the enteric protozoan parasite Entamoeba histolytica is among the three top causes of death from parasitic infections worldwide, as a result of amebic colitis (dysentery) and liver or brain abscess. When Eh invades the intestinal barrier and contacts host tissue there is a profound inflammatory response, which is thought to drive the disease. One of the central outstanding questions has been how the immune response is escalated at sites of invasion. Adherence of the parasite to host cells has long been appreciated in the pathogenesis of amebiasis, but was never considered as a “cue” that host cells use to detect Eh and initiate host defense. Here we introduce the idea, and demonstrate, that an intercellular junction forms between Eh and host cells upon contact that engages the NLRP3 inflammasome. The NLRP3 inflammasome belongs to a group of “danger” sensors that are uniquely designed to rapidly activate highly inflammatory host defenses. In this work, we identified a surface receptor on macrophages that normally functions in adhesion and polarization recognizes a protein on the outer surface of Eh. Intriguingly, Eh also secretes this protein. However, the full activation of the surface receptor leading to inflammasome activation only occurs when the Eh protein is immobilized on the parasite surface. Thus, we uncovered a molecular mechanism though which host cells distinguish direct contact, and therefore recognize parasites that are immediately present in the tissue, to mobilize a highly inflammatory response. We believe this concept is central to understanding the biology of amebiasis.
Vyšlo v časopise:
The NLRP3 Inflammasome Is a Pathogen Sensor for Invasive via Activation of α5β1 Integrin at the Macrophage-Amebae Intercellular Junction. PLoS Pathog 11(5): e32767. doi:10.1371/journal.ppat.1004887
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004887
Souhrn
Amebiasis caused by the enteric protozoan parasite Entamoeba histolytica is among the three top causes of death from parasitic infections worldwide, as a result of amebic colitis (dysentery) and liver or brain abscess. When Eh invades the intestinal barrier and contacts host tissue there is a profound inflammatory response, which is thought to drive the disease. One of the central outstanding questions has been how the immune response is escalated at sites of invasion. Adherence of the parasite to host cells has long been appreciated in the pathogenesis of amebiasis, but was never considered as a “cue” that host cells use to detect Eh and initiate host defense. Here we introduce the idea, and demonstrate, that an intercellular junction forms between Eh and host cells upon contact that engages the NLRP3 inflammasome. The NLRP3 inflammasome belongs to a group of “danger” sensors that are uniquely designed to rapidly activate highly inflammatory host defenses. In this work, we identified a surface receptor on macrophages that normally functions in adhesion and polarization recognizes a protein on the outer surface of Eh. Intriguingly, Eh also secretes this protein. However, the full activation of the surface receptor leading to inflammasome activation only occurs when the Eh protein is immobilized on the parasite surface. Thus, we uncovered a molecular mechanism though which host cells distinguish direct contact, and therefore recognize parasites that are immediately present in the tissue, to mobilize a highly inflammatory response. We believe this concept is central to understanding the biology of amebiasis.
Zdroje
1. Stanley S.L. Ameobiasis. Lancet. 2003; 361: 1025–1034. 12660071
2. Mortimer L., and Chadee K.. The Immunopathogenesis of Entamoeba histolytica. Exp. Parasitol. 2010; 126: 366–380. doi: 10.1016/j.exppara.2010.03.005 20303955
3. Prathap K., and Gilman R. The histopathology of acute intestinal amebiasis. A rectal biopsy study. Am. J. Pathol. 1970; 60: 229–246. 5457212
4. Chadee K., and Meerovitch E. Entamoeba histolytica: early progressive pathology in the cecum of the gerbil (Meriones unguiculatus). Am. J. Trop. Med. Hyg. 1985; 34: 283–291. 2858986
5. Lin J.Y, Chadee K. Macrophage cytotoxicity against Entamoeba histolytica trophozoites is mediated by nitric oxide from L-arginine. J. Immunol. 1992; 148: 3999–4005. 1318338
6. Seguin R., Mann B., Keller K., and Chadee K. Identification of the galactose-adherence lectin epitopes of Entamoeba histolytica that stimulate tumor necrosis factor-alpha production in macrophages. Proc. Natl. Acad. Sci. USA. 1995; 92: 12175–12179. 8618866
7. Underhill D.M., and Goodrige H. Information processing during phagocytosis. Nat. Rev. Immunol. 2012; 12: 492–502. doi: 10.1038/nri3244 22699831
8. Mortimer L., Moreau F., Cornick S., and Chadee K. Gal-lectin-dependent contact activates the inflammasome by invasive Entamoeba histolytica. Mucosal Immunol. 2014; 4: 829–841. doi: 10.1038/mi.2013.100 24253103
9. Latz E., Xiao S.T., and Stutz A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 2013; 13: 397–411. doi: 10.1038/nri3452 23702978
10. Yamin T., Ayala J.M., and Miller D.K. Activation of the native 45 kDa precursor form of interlekuin-1 converting enzyme. J. Biol. Chem. 1996: 271: 13273–13282. 8662843
11. Hornung V., Bauernfeind F., Halle A., Samstad E.O., Kono H., Rock K.L., et al. Silica crystals and aluminum salts mediate NALP-3 inflammasome activation via phagosomal destabilization. Nat. Immunol. 2008; 9: 847–856. doi: 10.1038/ni.1631 18604214
12. Halle A., Hornung V., Petzold G.C., Stewart C.R., Monks B.G., Reinheckel T., et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-b. Nat. Immunol. 2008; 9: 857–865. doi: 10.1038/ni.1636 18604209
13. Duewell P., Kono H., Rayner K., Sirois C., Vladimer G., Bauernfeind F.G., et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010; 464: 1357–1361. doi: 10.1038/nature08938 20428172
14. Misawa T., Takahama M., Kozaki T., Lee H., Zou J., Saitoh T. et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol. 2013; 14: 454–460. doi: 10.1038/ni.2550 23502856
15. Hou Y., Mortimer L., and Chadee K. Entamoeba histolytica cysteine proteinase 5 binds integrin on colonic cells and stimulates NFkappaB-mediated pro-inflammatory responses. J. Biol. Chem. 2010; 285: 35497–35504. doi: 10.1074/jbc.M109.066035 20837477
16. Kinashi T. Intracellular signaling controlling integrin activation in lymphocytes. Nat. Rev. Immunol. 2005; 5: 546–559. 15965491
17. Ruoslahti E. RGD and other recognition sequences for integrins. Annu. Rev. Cell. Dev. Biol. 1996; 12: 697–715 8970741
18. Bouvard D., Pouwels J., De Franceschi N., and Ivaska J. Integrin inactivators: balancing cellular functions in vitro and in vivo. Nat. Rev. Mol. Cell. Bio. 2013; 14: 430–442. doi: 10.1038/nrm3599 23719537
19. Hirst R., Horwitz A., Bucko C., and Rohrschneider L. Phosphorylation of the fibronectin receptor complex in cells transformed by oncogenes that encode tyrosine kinases. Proc. Nat. Acad. Sci. USA. 1986; 83: 6470–6474. 3018734
20. Kerur N., Veettil M.V., Sharma-Walia N., Sadagapan S., Bottero V., Paul A.G., et al. Characterization of entry and infection of monocytic THP-1 cells by Kaposi's sarcoma associated herpesvirus (KSHV): Role of heparan sulfate, DC-SIGN, integrins and signaling. Virology. 2010; 406: 103–116. doi: 10.1016/j.virol.2010.07.012 20674951
21. Chu C., Celik E., Rico F., and Moy V.T. Elongated membrane tethers, individually anchored by high affinity alpha(4)beta(1)/VCAM-1 complexes, are the quantal units of monocyte arrests. PLoS One. 2013; 8: e64187. doi: 10.1371/journal.pone.0064187 23691169
22. Ashida N., Arai H., Yamasaki M., and Kita T. Distinct signaling pathways for MCP-1-dependent integrin activation and chemotaxis. J. Biol. Chem. 2001; 276: 16555–16560. 11278464
23. Kim M., Jiang L.H., Wilson H.L., North R.A., and Surprenant A. Proteomic and functional evidence for a P2X7 receptor signalling complex. EMBO J. 2001; 20: 6347–6358. 11707406
24. Yegutkin G.G., Henttinen T., Samburski S.S., Spychala J., and Jalkanen S. The evidence for two opposite, ATP-generating and ATP-consuming, extracellular pathways on endothelial and lymphoid cells. Biochem. J. 2002; 367: 121–128. 12099890
25. Lohman A.W., and Isakson B.E. Differentiating connexin hemichannels and pannexin channels in cellular ATP release. FEBS Lett. 2014; 588: 1379–1388. doi: 10.1016/j.febslet.2014.02.004 24548565
26. Adamson S.E., and Leitinger N. The role of pannexin1 in the induction and resolution of inflammation. FEBS Lett. 2014; 588: 1416–1422. doi: 10.1016/j.febslet.2014.03.009 24642372
27. Pelegrin P., and Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J. 2006; 25: 5071–5082. 17036048
28. Qu Y., Misaghi S., Newton K., Gilmour L.L., Louie S., Cupp J.E., et al. Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J. Immunol. 2011; 186: 6553–6561. doi: 10.4049/jimmunol.1100478 21508259
29. Wang H., Xing Y., Mao L., Luo Y., Kang L., and Meng G. Pannexin-1 influences peritoneal cavity cell population but is not involved in NLRP3 inflammasome activation. Protein Cell. 2013; 4: 259–265. doi: 10.1007/s13238-013-2114-1 23549611
30. Chekeni F., Elliot M.R., Sandilos J.K., Walk S.F., Kinchen J.M., Lazarowski E.R., et al. Pannexin 1 channelsmediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature. 2010; 467: 863–867. doi: 10.1038/nature09413 20944749
31. Huston C.D, Boettner D.R., Miller-Sims V., and Petri W.A. Apoptotic killing and phagocytosis of host cells by the parasite Entamoeba histolytica. Infect Imm. 2003; 71: 964–972. 12540579
32. Weilinger N.L, Tang P.L., and Thompson R.J. Anoxia-induced NMDA receptor activation opens pannexin channels via Src family kinases. J. Neurosci. 2012; 36: 12579–12588. doi: 10.1523/JNEUROSCI.1267-12.2012 22956847
33. Iglesias R., Locovei S., Roque A., Alberto A.P., Dahl G., Spray D.C., et al. P2X7 receptor-Pannexin1 complex: pharmacology and signaling. Am. J. Physiol. Cell Physiol, 2008; 295: C752–C760. doi: 10.1152/ajpcell.00228.2008 18596211
34. Hellberg A., Nowak N., Leippe M., Tannich E., and Bruchhaus I. Recombinant expression and purification of an enzymatically active cysteine proteinase of the protozoan parasite Entamoeba histolytica. Protein Expr. Purif. 2002; 24: 131–137. 11812234
35. Nowak N., Lotter H., Tannich E., and Bruchhaus I. Resistance of Entamoeba histolytica to the cysteine proteinase inhibitor E64 is associated with secretion of pro-enzymes and reduced pathogenicity. J. Biol. Chem. 2004; 279: 38260–38266. 15215238
36. Kissoon-Singh V., Moreau F., Tusevych E., and Chadee K. Entamoeba histolytica exacerbates epithelial tight junction permeability and proinflammatory responses in Muc2(-/-) mice. Am. J. Pathol. 2013; 182: 852–865. doi: 10.1016/j.ajpath.2012.11.035 23357502
37. Tillack M., Nowak N., Lotter H., Bracha R., Mirelman D., Tannich E., Bruchhaus I. Increased expression of the major cysteine proteinases by stable episomal transfection underlines the important role of EhCP5 for the pathogenicity of Entamoeba histolytica. Mol Biochem Parasitol 2006; 149: 58–64. 16753229
38. Ankri S., Stolarsky T., Bracha R., Padilla-Vaca F., Mirelman D. Antisense inhibition of expression of cysteine proteinases affects Entamoeba histolytica-induced formation of liver abscess in hamsters. Infect. Immun. 1999; 67: 421–422. 9864246
39. Zhang Z., Yan L., Wang L., Seydel K.B., Li E., Ankri S., Mirelman D., Stanley S.L. Entamoeba histolytica cysteine proteinases with interleukin-1 beta converting enzyme (ICE) activity cause intestinal inflammation and tissue damage in amoebiasis. Mol. Microbiol. 2000; 37: 542–548. 10931347
40. Dustin M.L., and Groves J.T. Receptor signaling clusters at immune synapses. Annu. Rev. Biophys. 2012; 41: 543–556. doi: 10.1146/annurev-biophys-042910-155238 22404679
41. Goodridge H., Reyes C.N., Becker C.A., Katsumoto T.R., Ma J., Wolf A.J., et al. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse.’ Nature. 2011; 472: 471–475. doi: 10.1038/nature10071 21525931
42. Schenk U., Westendorf A.M., Radaelli E., Casati A., Ferro M., Fumagalli M., et al. Purinergic control of T cell activation by ATP released through Pannexin-1 Hemichannels. Sci. Signal. 2008; 1: 1–13. doi: 10.1126/stke.112pt1 18364512
43. Woehrle T., Yip L., Elkhal A., Sumi Y., Chen Y., Yao Y., et al. Pannexin-1 hemichannel-mediated ATP release together with P2X1 and P2X4 receptors regulate T-cell activation at the immune synapse. Blood. 2010; 116: 3475–3484. doi: 10.1182/blood-2010-04-277707 20660288
44. Jun K., Lee S., Lee H., and Choi B. Integrin a5b1 activates the NLRP3 inflammasome by direct interaction with a bacterial surface protein. Immunity. 2012: 36: 1–14. doi: 10.1016/j.immuni.2012.01.001 22284412
45. Diamond L.S., Harlow D.R., and Cunnick C.C. A new medium for the axenic cultivation of Entamoeba histolytica. Trans. R. Soc. Trop. Med. Hyg. 1978; 72: 431–432. 212851
46. Denis M., and Chadee K. Cytokine activation of murine macrophages for in vitro killing of Entamoeba histolytica trophozoites. Infect. Immun. 1989; 57: 1750–1756. 2542164
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 5
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Human Cytomegalovirus miR-UL112-3p Targets TLR2 and Modulates the TLR2/IRAK1/NFκB Signaling Pathway
- Paradoxical Immune Responses in Non-HIV Cryptococcal Meningitis
- Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance
- Fob1 and Fob2 Proteins Are Virulence Determinants of via Facilitating Iron Uptake from Ferrioxamine