Geometric Constraints Dominate the Antigenic Evolution of Influenza H3N2 Hemagglutinin
The influenza virus is one of the most rapidly evolving human viruses. Every year, it accumulates mutations that allow it to evade the host immune response of previously infected individuals. Which sites in the virus’ genome allow this immune escape and the manner of escape is not entirely understood, but conventional wisdom states that specific “immune epitope sites” in the protein hemagglutinin are preferentially attacked by host antibodies and that these sites mutate to directly avoid host recognition; as a result, these sites are commonly targeted by vaccine development efforts. Here, we combine influenza hemagglutinin sequence data, protein structural information, IEDB immune epitope data, and historical epitopes to demonstrate that neither the historical epitope groups nor epitopes based on IEDB data are crucial for predicting the rate of influenza evolution. Instead, we find that a simple geometrical model works best: sites that are closest to the location where the virus binds the human receptor and are exposed to solvent are the primary drivers of hemagglutinin evolution. There are two possible explanations for this result. First, the existing historical and IEDB epitope sites may not be the real antigenic sites in hemagglutinin. Second, alternatively, hemagglutinin antigenicity may not be the primary driver of influenza evolution.
Vyšlo v časopise:
Geometric Constraints Dominate the Antigenic Evolution of Influenza H3N2 Hemagglutinin. PLoS Pathog 11(5): e32767. doi:10.1371/journal.ppat.1004940
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004940
Souhrn
The influenza virus is one of the most rapidly evolving human viruses. Every year, it accumulates mutations that allow it to evade the host immune response of previously infected individuals. Which sites in the virus’ genome allow this immune escape and the manner of escape is not entirely understood, but conventional wisdom states that specific “immune epitope sites” in the protein hemagglutinin are preferentially attacked by host antibodies and that these sites mutate to directly avoid host recognition; as a result, these sites are commonly targeted by vaccine development efforts. Here, we combine influenza hemagglutinin sequence data, protein structural information, IEDB immune epitope data, and historical epitopes to demonstrate that neither the historical epitope groups nor epitopes based on IEDB data are crucial for predicting the rate of influenza evolution. Instead, we find that a simple geometrical model works best: sites that are closest to the location where the virus binds the human receptor and are exposed to solvent are the primary drivers of hemagglutinin evolution. There are two possible explanations for this result. First, the existing historical and IEDB epitope sites may not be the real antigenic sites in hemagglutinin. Second, alternatively, hemagglutinin antigenicity may not be the primary driver of influenza evolution.
Zdroje
1. Pybus OG, Rambaut A (2009) Evolutionary analysis of the dynamics of viral infectious disease. Nature Rev Genet 10: 540–550. doi: 10.1038/nrg2583 19564871
2. Bhatt S, Holmes EC, Pybus OG (2011) The genomic rate of molecular adaptation of the human influenza A virus. Mol Biol Evol 28: 2443–2451. doi: 10.1093/molbev/msr044 21415025
3. Luksza M, Lassig M (2014) A predictive fitness model for influenza evolution. Nature 507: 57–61. doi: 10.1038/nature13087 24572367
4. Bush RM, Bender CA, Subbarao K, Cox NJ, Fitch WM (1999) Predicting the evolution of human influenza A. Science 286: 1921–1925. doi: 10.1126/science.286.5446.1921 10583948
5. Koelle K, Cobey S, Grenfell B, Pascual M (2006) Epochal evolution shapes the phylody namics of interpandemic influenza A (H3N2) in humans. Science 314: 1898–1903. doi: 10.1126/science.1132745 17185596
6. Plotkin JB, Dusho J, Levin SA (2002) Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus. Proc Natl Acad Sci USA 99: 6263–6268. doi: 10.1073/pnas.082110799 11972025
7. Bedford T, Suchard MA, Lemey P, Dudas G, Gregory V, et al. (2014) Integrating influenza antigenic dynamics with molecular evolution. eLife 3: e01914. doi: 10.7554/eLife.01914 24497547
8. Wolf YI, Viboud C, Holmes EC, Koonin EV, Lipman DJ (2006) Long intervals of stasis punctuated by burst of positive selection in the seasonal evolution of influenza a virus. Biology Direct 1: 34. doi: 10.1186/1745-6150-1-34 17067369
9. Vijaykrishna D, Smith GJD, Pybus OG, Zhu H, Bhatt S, et al. (2011) Long-term evolution and transmission dynamics of swine influenza A virus. Nature 1473: 519–522. doi: 10.1038/nature10004
10. Wiley DC, Wilson IA, Skehel JJ (1981) Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289: 373–378. doi: 10.1038/289373a0 6162101
11. Wiley DC, Skehel JJ (1987) The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Ann Rev Biochem 56: 365–394. doi: 10.1146/annurev.bi.56.070187.002053 3304138
12. Bush RM, Fitch WM, Bender CA, Cox NJ (1999) Positive selection on the H3 hemagglu tinin gene of human influenza virus A. Mol Biol Evol 16: 1457–1465. doi: 10.1093/oxfordjournals.molbev.a026057 10555276
13. Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Ann Rev Biochem 69: 531–569. doi: 10.1146/annurev.biochem.69.1.531 10966468
14. Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, et al. (2004) Mapping the antigenic and genectic evolution of influenza virus. Science 205: 371–375. doi: 10.1126/science.1097211
15. Suzuki Y (2006) Natural selection on the influenza virus genome. Mol Biol Evol 23: 1902–1911. doi: 10.1093/molbev/msl050 16818477
16. Shih AC, Hsiao T, Ho M, Li W (2007) Simultaneous amino acid substitutions at antigenic sites drive influenza a hemagglutinin evolution. Proc Natl Acad Sci USA 104: 6283–6288. doi: 10.1073/pnas.0701396104 17395716
17. Tamuri AU, dos Reis M, Hay AJ, Goldstein RA (2009) Identifying changes in selective constraints: Host shifts in influenza. PLoS Comput Biol 5: e1000564. doi: 10.1371/journal.pcbi.1000564 19911053
18. Pan K, Deem MW (2011) Quantifying selection and diversity in viruses by entropy meth ods, with application to the haemagglutinin of H3N2 influenza. J Roy Soc Interface 8: 1644–1653. doi: 10.1098/rsif.2011.0105
19. Meyer AG, Wilke CO (2013) Integrating sequence variation and protein structure to identify sites under selection. Mol Biol Evol 30: 36–44. doi: 10.1093/molbev/mss217 22977116
20. Meyer AG, Dawson ET, Wilke CO (2013) Cross-species comparison of site-specific evolutionary-rate variation in influenza hemagglutinin. Phil Trans R Soc B 368: 20120334. doi: 10.1098/rstb.2012.0334 23382434
21. Koel BF, Burke DF, Bestebroer TM, van der Vliet S, Zondag GCM, et al. (2013) Substi tutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science 342: 976–979. doi: 10.1126/science.1244730 24264991
22. Neher RA, Russell CA, Shraiman BI (2014) Predicting evolution from the shape of ge nealogical trees. eLife 3: e03568. doi: 10.7554/eLife.03568
23. Hensley SE, Das SR, Bailey AL, Schmidt LM, Hickman HD, et al. (2009) Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science 326: 734–736. doi: 10.1126/science.1178258 19900932
24. Kosakovsky Pond SL, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenetics. Bioinformatics 21: 676–679. doi: 10.1093/bioinformatics/bti079
25. Mirny LA, Shakhnovich EI (1999) Universally conserved positions in protein folds: reading evolutionary signals about stability, folding kinetics and function. J Mol Biol 291: 177–196. doi: 10.1006/jmbi.1999.2911 10438614
26. Bustamante CD, Townsend JP, Hartl DL (2000) Solvent accessibility and purifying se lection within proteins of Escherichia coli and Salmonella enterica. Mol Biol Evol 17: 301–308. doi: 10.1093/oxfordjournals.molbev.a026310 10677853
27. Franzosa EA, Xia Y (2009) Structural determinants of protein evolution are context-sensitive at the residue level. Mol Biol Evol 26: 2387–2395. doi: 10.1093/molbev/msp146 19597162
28. Shahmoradi A, Sydykova DK, Spielman SJ, Jackson EL, Dawson ET, et al. (2014) Pre dicting evolutionary site variability from structure in viral proteins: buriedness, packing, flexibility, and design. J Mol Evol 79: 130–142. doi: 10.1007/s00239-014-9644-x 25217382
29. Yeh SW, Liu JW, Yu SH, Shih CH, Hwang JK, et al. (2014) Site-specific structural constraints on protein sequence evolutionary divergence: Local packing density versus solvent exposure. Mol Biol Evol 31: 135–139. doi: 10.1093/molbev/mst178 24109601
30. Huang TT, Marcos ML, Hwang JK, Echave J (2014) A mechanistic stress model of protein evolution accounts for site-specific evolutionary rates and their relationship with packing density and flexibility. BMC Evol Biol 14: 78. doi: 10.1186/1471-2148-14-78 24716445
31. Sikosek T, Chan HS (2014) Biophysics of protein evolution and evolutionary protein bio physics. J Royal Soc Interface 11: 20140419. doi: 10.1098/rsif.2014.0419
32. Echave J, Jackson EL, Wilke CO (2014) Relationship between protein thermody namic constraints and variation of evolutionary rates among sites. bioRxivorg: http://dx.doi.org/10.1101/009423.
33. Lichtarge O, Bourne HR, Cohen FE (1996) An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol 257: 342–358. doi: 10.1006/jmbi.1996.0167 8609628
34. Kim PM, Lu LJ, Xia Y, Gerstein MB (2006) Relating three-dimensional structures to protein networks provides evolutionary insights. Science 314: 1938–1941. doi: 10.1126/science.1136174 17185604
35. Bullough PA, Hughson FM, Skehel JJ, Wiley DC (1994) Structure of influenza haemag glutinin at the ph of membrane fusion. Nature 371: 37–43. doi: 10.1038/371037a0 8072525
36. Bui H, Peters B, Assarsson E, Mbawuike I, Sette A (2007) Ab and T cell epitopes of influenza A virus, knowledge and oppurtunities. Proc Natl Acad Sci USA 104: 246–251. doi: 10.1073/pnas.0609330104 17200302
37. Wrammert J, Smith K, Miller J, Langley WA, Kokko K, et al. (2008) Influenza-virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin inter mediates. Nature 453: 667–671. doi: 10.1038/nature06890 18449194
38. Throsby M, van den Brink E, Jongeneelen M, Poon LLM, Alard P, et al. (2008) Het erosubtypic neutralizing monoclonal antibodies cross-protective against h5n1 and h1n1 recovered from human igm+ memory b cells. PLOS ONE 3: e3942. doi: 10.1371/journal.pone.0003942 19079604
39. Ivanovic T, Choi JL, Whelan SP, van Oijen AM, Harrison SC (2013) Influenza-virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin inter mediates. eLife 2: e00333. doi: 10.7554/eLife.00333 23550179
40. Linderman SL, Chambers BS, Zost SJ, Parkhouse K, Li Y, et al. (2014) Potential antigenic explanation for atypical h1n1 infections among middle-aged adults during the 20132014 influenza season. Proc Natl Acad Sci USA 111: 15798–15803. doi: 10.1073/pnas.1409171111 25331901
41. Li Y, Myers JL, Bostick DL, Sullivan CB, Madara J, et al. (2013) Immune history shapes specificity of pandemic h1n1 influenza antibody responses. J Exp Med 210: 1493–1500. doi: 10.1084/jem.20130212 23857983
42. Squires RB, Noronha J, Hunt V, García-Sastre A, Macken C, et al. (2012). Influenza re search database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and Other Respiratory Viruses.
43. Vita R, Zarebski L, Greenbaum JA, Emami H, Hoof I, et al. (2010) The immune epitope database 2.0. Nucleic Acids Res 38: D854–62. doi: 10.1093/nar/gkp1004 19906713
44. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772–780. doi: 10.1093/molbev/mst010 23329690
45. Price MN, Dehal PS, Arkin AP (2009) FastTree 2—approximately maximum-likelihood trees for large alignments. PLOS ONE 5: e9490. doi: 10.1371/journal.pone.0009490
46. Yang Z (2006) Computational Molecular Evolution. Oxford University Press.
47. Muse SV, Gaut BS (1994) A likelihood approach for comparing synonymous and nonsyn onymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol 11: 715–724. 7968485
48. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577–2637. doi: 10.1002/bip.360221211 6667333
49. Tien MZ, Meyer AG, Sydykova DK, Spielman SJ, Wilke CO (2013) Maximum allowed solvent accessibilites of residues in proteins. PLOS ONE 8: e80635. doi: 10.1371/journal.pone.0080635 24278298
50. Ihaka R, Gentleman R (1996) R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics 5: 299–314. doi: 10.1080/10618600.1996.10474713
51. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer New York. URL http://had.co.nz/ggplot2/book.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 5
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Human Cytomegalovirus miR-UL112-3p Targets TLR2 and Modulates the TLR2/IRAK1/NFκB Signaling Pathway
- Paradoxical Immune Responses in Non-HIV Cryptococcal Meningitis
- Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance
- Fob1 and Fob2 Proteins Are Virulence Determinants of via Facilitating Iron Uptake from Ferrioxamine