Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to
In recent years, the role of the chloroplast in the defense against microbes has been intensively investigated and is of high interest to both plant-microbe interaction and photosynthesis research. The xanthophyll cycle is well known to be involved in dissipating excess light energy to protect the photosynthetic apparatus in a process commonly assessed via non-photochemical quenching (NPQ) of chlorophyll fluorescence. Recent studies show that NPQ can be positively or negatively affected by pathogen attack. However, knowledge about the regulatory processes by which pathogens affect NPQ, as well as their impact on plant defense responses, is incomplete. This work characterized the impact of infection of Arabidopsis leaves by the necrotrophic pathogen Sclerotinia sclerotiorum on the xanthophyll cycle. Our research revealed for the first time that Sclerotinia uses a novel strategy involving manipulation of the xanthophyll cycle to weaken host defense responses and increase its successful colonization of host cells. These findings contribute to understanding the plant-Sclerotinia interactions in early pathogenesis, which will provide new sights into the development of strategies to increase Sclerotinia resistance in plants for practical applications.
Vyšlo v časopise:
Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to. PLoS Pathog 11(5): e32767. doi:10.1371/journal.ppat.1004878
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004878
Souhrn
In recent years, the role of the chloroplast in the defense against microbes has been intensively investigated and is of high interest to both plant-microbe interaction and photosynthesis research. The xanthophyll cycle is well known to be involved in dissipating excess light energy to protect the photosynthetic apparatus in a process commonly assessed via non-photochemical quenching (NPQ) of chlorophyll fluorescence. Recent studies show that NPQ can be positively or negatively affected by pathogen attack. However, knowledge about the regulatory processes by which pathogens affect NPQ, as well as their impact on plant defense responses, is incomplete. This work characterized the impact of infection of Arabidopsis leaves by the necrotrophic pathogen Sclerotinia sclerotiorum on the xanthophyll cycle. Our research revealed for the first time that Sclerotinia uses a novel strategy involving manipulation of the xanthophyll cycle to weaken host defense responses and increase its successful colonization of host cells. These findings contribute to understanding the plant-Sclerotinia interactions in early pathogenesis, which will provide new sights into the development of strategies to increase Sclerotinia resistance in plants for practical applications.
Zdroje
1. Liu Y, Ren D, Pike S, Pallardy S, Gassmann W, et al. (2007) Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J 51: 941–954. doi: 10.1111/j.1365-313X.2007.03191.x 17651371.
2. Mühlenbock P, Szechyńska-Hebda M, Płaszczyca M, Baudo M, Mateo A, et al. (2008) Chloroplast signaling and LESION SIMULATING DISEASE1 regulate crosstalk between light acclimation and immunity in Arabidopsis. Plant Cell 20: 2339–2356. doi: 10.1105/tpc.108.059618 18790826
3. Sierla M, Rahikainen M, Salojärvi J, Kangasjärvi J, Kangasjärvi S (2013) Apoplastic and chloroplastic redox signaling networks in plant stress responses. Antioxid Redox Signal 18: 2220–2239. doi: 10.1089/ars.2012.5016 23157163.
4. Baier M, Dietz KJ (2005) Chloroplasts as source and target of cellular redox regulation, a discussion on chloroplast redox signals in the context of plant physiology. J Exp Bot 56: 1449–1462. doi: 10.1093/jxb/eri161 15863449.
5. Berger S, Sinha AK, Roitsch T (2007) Plant physiology meets phytopathology, plant primary metabolism and plant-pathogen interactions. J Exp Bot 58: 4019–4026. doi: 10.1093/jxb/erm298 18182420.
6. Kangasjärvi S, Neukermans J, Li S, Aro E, Noctor G (2012) Photosynthesis, photorespiration, and light signalling in defence responses. J Exp Bot 63: 1619–1636. doi: 10.1093/jxb/err402 22282535.
7. Hua J (2013) Modulation of plant immunity by light, circadian rhythm, and temperature. Curr Opin Plant Biol 16: 406–413. doi: 10.1016/j.pbi.2013.06.017 23856082.
8. Heiber I, Cai W, Baier M (2014) Linking chloroplast antioxidant defense to carbohydrate availability, the transcript abundance of stromal ascorbate peroxidase is sugar-controlled via ascorbate biosynthesis. Mol Plant 7: 58–70. doi: 10.1093/mp/sst154 24203232.
9. Demmig-Adams B, Stewart JJ, Adams WW (2014) Multiple feedbacks between chloroplast and whole plant in the context of plant adaptation and acclimation to the environment. Philos T R Soc B 369: 20130244. doi: 10.1098/rstb.2013.0244 24591724.
10. Demmig-Adams B, Cohu CM, Amiard V, Zadelhoff G, Veldink GA, et al. (2013) Emerging trade-offs—impact of photoprotectants (PsbS, xanthophylls, and vitamin E) on oxylipins as regulators of development and defense. New Phytol 197: 720–729. doi: 10.1111/nph.12100 23418633.
11. Demmig-Adams B, Stewart JJ, Adams WW III (2014) Chloroplast photoprotection and the trade-off between abiotic and biotic defense. In: Demmig-Adams B, Garab G, Adams WW III, Govindjee, editors. Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Springer Netherlands. pp. 631–643. doi: 10.1007/978-94-017-9032-1_28
12. Demmig-Adams B, Stewart JJ, Burch TA, Adams WW III (2014) Insights from placing photosynthetic light harvesting into context. J Phys Chem Lett 5: 2880–2889. doi: 10.1021/jz5010768
13. Logan BA, Demmig-Adams B, Adams WW III, Bilger W (2014) Context, quantification, and measurement guide for non-photochemical quenching of chlorophyll fluorescence. In: Demmig-Adams B, Garab G, Adams WW III, Govindjee, editors. Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Springer Netherlands. pp. 187–201. doi: 10.1007/978-94-017-9032-1_7
14. Horton P, Ruban AV (1992) Regulation of photosystem II. Photosynth Res 34: 375–385. doi: 10.1007/BF00029812 24408833.
15. Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47: 655–684. doi: 10.1146/annurev.arplant.47.1.655 15012304.
16. Adams WW, Demmig-Adams B, Winter K (1990) Relative contributions of zeaxanthin-related and zeaxanthin-unrelated types of ‘high-energy state’ quenching of chlorophyll fluorescence in spinach leaves exposed to various environmental conditions. Plant Physiol 92: 302–309. doi: http://dx.doi.org/10.1104/pp.92.2.302 16667275.
17. Demmig-Adams B, Adams WW (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1: 21–26. doi: 10.1016/S1360-1385(96)80019-7
18. Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, et al. (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403: 391–395. doi: 10.1038/35000131 10667783.
19. Li XP, Gilmore AM, Caffari S, Bassi R, Golan T, et al. (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279: 22866–22874. doi: 10.1074/jbc.M402461200 15033974.
20. Johnson MP, Pérez-Bueno ML, Zia A, Horton P, Ruban AV (2009) The zeaxanthin-independent and zeaxanthin-dependent qE components of nonphotochemical quenching involve common conformational changes within the photosystem II antenna in Arabidopsis. Plant Physiol 149: 1061–1075. doi: 10.1104/pp.108.129957 19011000.
21. Ruban AV, Johnson MP, Duffy CD (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817: 167–181. doi: 10.1016/j.bpj.2012.04.044 22713583.
22. Duffy CDP, Chmeliov J, Macernis M, Sulskus J, Valkunas L, et al. (2013) Modeling of fluorescence quenching by lutein in the plant light-harvesting complex LHCII. J Phys Chem B 117: 10974–10986. doi: 10.1021/jp3110997 23234311.
23. Ilioaia C, Duffy CDP, Johnson MP, Ruban AV (2013) Changes in the energy transfer pathways within photosystem II antenna induced by xanthophyll cycle activity. J Phys Chem B 117: 5841–5847. doi: 10.1021/jp402469d 23597158.
24. Ruban AV, Walters RG, Horton P (1992) The molecular mechanism of the control of excitation energy dissipation in chloroplast membranes inhibition of ΔpH-dependent quenching of chlorophyll fluorescence by dicyclohexylcarbodiimide. FEBS Lett 309: 175–179. doi: 10.1016/0014-5793(92)81089-5 1380472.
25. Crofts AR, Yerkes CT (1994) A molecular mechanism for qE quenching. FEBS Lett 352: 265–270. doi: 10.1016/0014-5793(94)00976-7 7925984.
26. Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125: 1558–1566. doi: 10.1104/pp.125.4.1558 11299337.
27. Demmig-Adams B, Cohu CM, Muller O, Adams WW III (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res 113: 75–88. doi: 10.1007/s11120-012-9761-6 22790560.
28. Frenkel M, Külheim C, Jänkänpää HJ, Skogström O, Dall’Osto L, et al. (2009) Improper excess light energy dissipation in Arabidopsis results in a metabolic reprogramming. BMC Plant Biol 9: 12. doi: 10.1186/1471-2229-9-12 19171025.
29. Jänkänpää HJ, Frenkel M, Zulfugarov I, Reichelt M, Krieger-Liszkay A, et al. (2013) Non-photochemical quenching capacity in Arabidopsis thaliana affects herbivore behaviour. PloS ONE 8: e53232. doi: 10.1371/journal.pone.0053232 23301046.
30. Göhre V, Jones AME, Sklenář J, Robatzek S, Weber APM (2012) Molecular crosstalk between PAMP-triggered immunity and photosynthesis. Mol Plant Microbe Interact 25: 1083–1092. doi: 10.1094/MPMI-11-11-0301 22550958.
31. Berger S, Papadopoulos M, Schreiber U, Kaiser W, Roitsch T (2004) Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiol Plant 22: 419–428. doi: 10.1111/j.1399-3054.2004.00433.x
32. Bonfig KB, Schreiber U, Gabler A, Roitsch T, Berger S (2006) Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta 225: 1–12. doi: 10.1007/s00425-006-0303-3 16807755.
33. Havaux M, Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA 96: 8762–8767. doi: 10.1073/pnas.96.15.8762 10411949.
34. Rodríguez-Moreno L, Pineda M, Soukupová J, Macho AP, Beuzón CR, et al. (2008) Early detection of bean infection by Pseudomonas syringae in asymptomatic leaf areas using chlorophyll fluorescence imaging. Photosynth Res 96: 27–35. doi: 10.1007/s11120-007-9278-6 18000760.
35. Berger S, Benediktyova Z, Matous K, Bonfig K, Mueller MJ, et al. (2007) Visualization of dynamics of plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis, Differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. J Exp Bot 58: 797–806. doi: 10.1093/jxb/erl208 17138624.
36. Li Y, Walton DC (1990) Violaxanthin is an abscisic acid precursor in water-stressed dark-grown bean leaves. Plant Physiol 92: 551–559. doi: 10.1104/pp.92.3.551 16667314.
37. Seo M, Koshiba T (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7: 41–48. doi: 10.1016/S1360-1385(01)02187-2 11804826
38. Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, et al. (2008) An update on abscisic acid signaling in plants and more… Mol Plant 1: 198–217. doi: 10.1093/mp/ssm022 19825533.
39. Milborrow BV (2001) The pathway of biosynthesis of abscisic acid in vascular plants, a review of the present state of knowledge of ABA biosynthesis. J Exp Bot 52: 1145–1164. doi: 10.1093/jexbot/52.359.1145 11432933.
40. Duckham SC, Linforth RST, Taylor IB (1991) Abscisic-acid-deficient mutants at the aba gene locus of Arabidopsis thaliana are impaired in the epoxidation of zeaxanthin. Plant Cell Environ 14: 601–606. doi: 10.1111/j.1365-3040.1991.tb01531.x
41. Marin E, Nussaume L, Gonneau M, Sotta B, Hugueney P, et al. (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15: 2331–2342. 8665840.
42. Bratt CE, Arvidsson PO, Carlsson M, Åkerlund HE (1995) Regulation of violaxanthin de-epoxidase activity by pH and ascorbate concentration. Photosynth Res 45: 169–175. doi: 10.1007/BF00032588 24301483.
43. Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, et al. (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15: 939–951. doi: 10.1105/tpc.010538 12671089.
44. Zaks J, Amarnath K, Kramer DM, Niyogi KK, Fleming GR (2012) A kinetic model of rapidly reversible nonphotochemical quenching. Proc Natl Acad Sci USA 109: 15757–15762. doi: 10.1073/pnas.1211017109 22891305
45. Gilmore AM, Yamamoto HY (1992) Dark induction of zeaxanthin-dependent nonphotochemical fluorescence quenching mediated by ATP. Proc Natl Acad Sci USA 89: 1899–1903. doi: 10.1073/pnas.89.5.1899 1542689.
46. Krieger A, Moya I, Weis E (1992) Energy-dependent quenching of chlorophyll a fluorescence, effect of pH on stationary fluorescence and picosecond-relaxation kinetics in thylakoid membranes and photosystem II preparations. Biochim Biophys Acta 1102: 167–176. doi: 10.1016/0005-2728(92)90097-L
47. Demmig-Adams B, Gilmore AM, Adams W (1996) Carotenoids 3: in vivo function of carotenoids in higher plants. FASEB J 10: 403–412. doi: 10.1096/fj.1530 8647339.
48. Criscitiello MF, Dickman MB, Samuel JE, de Figueiredo P (2013) Tripping on acid: trans-kingdom perspectives on biological acids in immunity and pathogenesis. PLoS Pathog 9: e1003402. doi: 10.1371/journal.ppat.1003402 23874196.
49. Prusky D, Yakoby N (2003) Pathogenic fungi, leading or led by ambient pH? Mol Plant Pathol 4: 509–516. doi: 10.1046/j.1364-3703.2003.00196.x 20569410.
50. Rollins JA, Dickman MB (2001) pH signaling in Sclerotinia sclerotiorum, identification of a pacC/RIM1 homolog. App Environ Microb 67: 75–81. doi: 10.1128/AEM.67.1.75–81.2001 11133430.
51. Maxwell DP, Lumsden RD (1970) Oxalic acid production by Sclerotinia sclerotiorum in infected bean and in culture. Phytopathology 60: 1395–1398. doi: 10.1094/Phyto-60-1395
52. Godoy G, Steadman JR, Dickman MB, Dam R (1990) Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol Mol Plant Pathol 37: 179–191. doi: 10.1016/0885-5765(90)90010-U
53. Bolton MD, Thomma BP, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7: 1–16. doi: 10.1111/j.1364-3703.2005.00316.x 20507424.
54. Errakhi R, Meimoun P, Lehner A, Vidal G, Briand J, et al. (2008) Anion channel activity is necessary to induce ethylene synthesis and programmed cell death in response to oxalic acid. J Exp Bot 59: 3121–3129. doi: 10.1093/jxb/ern166 18612171.
55. Kim KS, Min JY, Dickman MB (2008) Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Mol Plant Microbe Interact 21: 605–612. doi: 10.1094/MPMI-21-5-0605 18393620.
56. Kabbage M, Williams B, Dickman MB (2013) Cell death control, the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum. PLoS Patho 9: e1003287. doi: 10.1371/journal.ppat.1003287 23592997.
57. Cessna SG, Sears VE, Dickman MB, Low PS (2000) Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12: 2191–2199. doi: 10.1105/tpc.12.11.2191 11090218.
58. Williams B, Kabbage M, Kim HJ, Britt R, Dickman MB (2011) Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog 7: e1002107. doi: 10.1371/journal.ppat.1002107 21738471.
59. Zhou J, Sun A, Xing D (2013) Modulation of cellular redox status by thiamine-activated NADPH oxidase confers Arabidopsis resistance to Sclerotinia sclerotiorum. J Exp Bot 64: 3261–3272. doi: 10.1093/jxb/ert166 23814275.
60. Guimarães RL, Stotz HU (2004) Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol 136: 3703–3711. doi: 10.1104/pp.104.049650 15502012
61. Guo XM, Stotz HU (2010) ABA signaling inhibits oxalate-induced production of reactive oxygen species and protects against Sclerotinia sclerotiorum in Arabidopsis thaliana. Eur J Plant Pathol 128: 7–19. doi: 10.1007/s10658-010-9623-z
62. Perchepied L, Balagué C, Riou C, Claudel-Renard C, Rivière N, et al. (2010) Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. Mol Plant Microbe Interact 23: 846–860. doi: 10.1094/MPMI-23-7-0846 20521948
63. Stotz HU, Jikumaru Y, Shimada Y, Sasaki E, Stingl N, et al. (2011) Jasmonate-dependent and COI1-independent defense responses against Sclerotinia sclerotiorum in Arabidopsis thaliana: auxin is part of COI1-independent defense signaling. Plant Cell Physiol 52: 1941–1956. doi: 10.1093/pcp/pcr127 21937677.
64. Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998. doi: 10.1093/jxb/ert208 23913954.
65. Bak G, Lee EJ, Lee Y, Kato M, Segami S, et al. (2013) Rapid structural changes and acidification of guard cell vacuoles during stomatal closure require phosphatidylinositol 3, 5-bisphosphate. Plant Cell25: 2202–2216. doi: 10.1105/tpc.113.110411 23757398.
66. Tu JC (1985) Tolerance of white bean (Phaseolus vulgaris) to white mold (Sclerotinia sclerotiorum) associated with tolerance to oxalic acid. Physiol Plant Pathol 26: 111–117. doi: 10.1016/0048-4059(85)90034-7
67. Lau OS, Deng XW (2010) Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 13: 571–577. doi: 10.1016/j.pbi.2010.07.001 20739215.
68. Kangasjärvi S, Tikkanen M, Durian G, Aro EM (2013) Photosynthetic light reactions-An adjustable hub in basic production and plant immunity signaling. Plant Physiol Bioch 81: 128–134. doi: 10.1016/j.plaphy.2013.12.004 24361390.
69. Roden LC, Ingle RA (2009) Lights, rhythms, infection: the role of light and the circadian clock in determining the outcome of plant-pathogen interactions. Plant Cell 21: 2546–2552. doi: 10.1105/tpc.109.069922 19789275.
70. Manteau S, Abouna S, Lambert B, Legendre L (2003) Differential regulation by ambient pH of putative virulence factor secretion by the phytopathogenic fungus Botrytis cinerea. FEMS Microbiol Ecol 43: 359–366. doi: 10.1111/j.1574-6941.2003.tb01076.x 19719667.
71. Adams WW III, Muller O, Cohu CM, Demmig-Adams B (2013) May photoinhibition be a consequence, rather than a cause, of limited plant productivity? Photosynth Res 117: 31–44. doi: 10.1007/s11120-013-9849-7 23695654.
72. Joliot PA, Finazzi G (2010) Proton equilibration in the chloroplast modulates multiphasic kinetics of nonphotochemical quenching of fluorescence in plants. Proc Natl Acad Sci USA 107: 12728–12733. doi: 10.1073/pnas.1006399107 20616026.
73. Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133: 29–36. doi: 10.1104/pp.103.025395 12970472.
74. Kwak JM, Mori IC, Pei ZM, Leonhardt N, et al. (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J, 22: 2623–2633. doi: 10.1093/emboj/cdg277 12773379.
75. Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8: 397–403. doi: 10.1016/j.pbi.2005.05.014 15939662.
76. Demmig-Adams B, Adams WW III, Barker DH, Logan BA, Bowling DR, et al. (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plantarum 98: 253–264. doi: 10.1034/j.1399-3054.1996.980206.x
77. Amiard V, Demmig-Adams B, Mueh KE, Turgeon R, Combs AF, et al. (2007) Role of light and jasmonic acid signaling in regulating foliar phloem cell wall ingrowth development. New Phytol 173: 772–731. doi: 10.1111/j.1469-8137.2006.01954.x 17286821.
78. Garg H, Li H, Sivasithamparam K, Kuo J, Barbetti MJ (2010) The infection processes of Sclerotinia sclerotiorum in cotyledon tissue of a resistant and a susceptible genotype of Brassica napus. Ann Bot 106: 897–908. doi: 10.1093/aob/mcq196 20929899.
79. Imashimizu M, Bernát G, Sunamura EI, Broekmans M, Konno H, et al. (2011) Regulation of F0F1-ATPase from Synechocystis sp. PCC 6803 by γ and ϵ subunits is significant for light/dark adaptation. J Biol Chem 286: 26595–26602. doi: 10.1074/jbc.M111.234138 21610078.
80. Thayer SS, Björkman O (1990) Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosynth Res 23: 331–343. doi: 10.1007/BF00034864 24419657
81. Müller-Moulé P, Conklin PL, Niyogi KK (2002) Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiol 128: 970–977. doi: 10.1104/pp.010924 11891252.
82. Barrero J, Rodríguez PL, Quesada V, Piqueras P, Ponce MR, et al. (2006) Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant Cell Environ 29: 2000–2008. doi: 10.1111/j.1365-3040.2006.01576.x 16930325.
83. Lin PC, Hwang SG, Endo A, Okamoto M, Koshiba T, et al. (2007) Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance. Plant physiol 143: 745–758. doi: 10.1104/pp.106.084103 17189333.
84. Schraut D, Ullrich CI, Hartung W (2004) Lateral ABA transport in maize roots (Zea mays): visualization by immunolocalization. J Exp Bot 55: 1635–1641. doi: 10.1093/jxb/erh193 15234994.
85. Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273: 1853–1856. doi: 10.1126/science.273.5283.1853 8791589.
86. Sun A, Nie S, Xing D (2012) Nitric oxide-mediated maintenance of redox homeostasis contributes to NPR1-dependent plant innate immunity triggered by lipopolysaccharides. Plant Physiol 160: 1081–1096. doi: 10.1104/pp.112.201798 22926319.
87. Wolf G, Fric F (1981) A rapid staining method for Erysiphe graminis f. sp. Hordei in and on whole barley leaves with a protein-specific dye. Phytopathology 71: 596–598. doi: 10.1094/Phyto-71-596
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 5
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Human Cytomegalovirus miR-UL112-3p Targets TLR2 and Modulates the TLR2/IRAK1/NFκB Signaling Pathway
- Paradoxical Immune Responses in Non-HIV Cryptococcal Meningitis
- Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance
- Fob1 and Fob2 Proteins Are Virulence Determinants of via Facilitating Iron Uptake from Ferrioxamine