Influenza A Virus on Oceanic Islands: Host and Viral Diversity in Seabirds in the Western Indian Ocean
Avian influenza viruses circulate in wild birds, worldwide, in particular in ducks and seabirds from which a large diversity of viruses have been described. The continued emergence of influenza viruses in poultry and humans has stimulated both research activities and surveillance programs; however, there are still many gaps in our knowledge on virus ecology and epidemiology, in particular in the Southern Hemisphere. In this study we investigated influenza virus circulation in seabirds in the islands of the Western Indian Ocean. We demonstrate that terns act as a major host for influenza viruses on oceanic islands and that, in addition to being infected with virus subtypes usually associated to wild birds, they also could regularly be in contact with viruses that represent a significant threat to veterinary and human health. This study demonstrates that the spatial isolation of these oceanic islands does not limit connectivity with the global avian influenza virus epidemiology and that it may create opportunities for local viral maintenance in wild bird communities.
Vyšlo v časopise:
Influenza A Virus on Oceanic Islands: Host and Viral Diversity in Seabirds in the Western Indian Ocean. PLoS Pathog 11(5): e32767. doi:10.1371/journal.ppat.1004925
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004925
Souhrn
Avian influenza viruses circulate in wild birds, worldwide, in particular in ducks and seabirds from which a large diversity of viruses have been described. The continued emergence of influenza viruses in poultry and humans has stimulated both research activities and surveillance programs; however, there are still many gaps in our knowledge on virus ecology and epidemiology, in particular in the Southern Hemisphere. In this study we investigated influenza virus circulation in seabirds in the islands of the Western Indian Ocean. We demonstrate that terns act as a major host for influenza viruses on oceanic islands and that, in addition to being infected with virus subtypes usually associated to wild birds, they also could regularly be in contact with viruses that represent a significant threat to veterinary and human health. This study demonstrates that the spatial isolation of these oceanic islands does not limit connectivity with the global avian influenza virus epidemiology and that it may create opportunities for local viral maintenance in wild bird communities.
Zdroje
1. Altizer S, Bartel R, Han BA. Animal migration and infectious disease risk. Science. 2011;331: 296–302. doi: 10.1126/science.1194694 21252339
2. Tortosa P, Pascalis H, Guernier V, Cardinale E, Le Corre M, Goodman SM, et al. Deciphering arboviral emergence within insular ecosystems. Infect Genet Evol. 2012;12: 1333–9. doi: 10.1016/j.meegid.2012.03.024 22504353
3. Hubálek Z. An annotated checklist of pathogenic microorganisms associated with migratory birds. J Wildl Dis. 2004;40: 639–59. 15650082
4. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992;56: 152–179. 1579108
5. Stallknecht DE, Shane S. Host range of avian influenza virus in free-living birds. Vet Res Commun. 1988;12: 125–141. 3055662
6. Olsen B, Munster VJ, Wallensten A, Waldenström J, Osterhaus ADME, Fouchier RAM. Global patterns of influenza A virus in wild birds. Science. 2006;312: 384–8. 16627734
7. Vijaykrishna D, Bahl J, Riley S, Duan L, Zhang JX, Chen H, et al. Evolutionary dynamics and emergence of panzootic H5N1 influenza viruses. PLOS Pathog. 2008;4: e1000161. doi: 10.1371/journal.ppat.1000161 18818732
8. Smith GJD, Bahl J, Vijaykrishna D, Zhang J, Poon LLM, Chen H, et al. Dating the emergence of pandemic influenza viruses. Proc Natl Acad Sci U S A. 2009;106: 11709–11712. doi: 10.1073/pnas.0904991106 19597152
9. Lam TT-Y, Wang J, Shen Y, Zhou B, Duan L, Cheung C-L, et al. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature. 2013;502: 241–4. doi: 10.1038/nature12515 23965623
10. Arnal A, Vittecoq M, Pearce-Duvet J, Gauthier-Clerc M, Boulinier T, Jourdain E. Laridae: A neglected reservoir that could play a major role in avian influenza virus epidemiological dynamics. Crit Rev Microbiol. 2014;7828: 1–12.
11. Danckwerts DK, Mcquaid CD, Jaeger A, Mcgregor GK, Dwight R, Le Corre M, et al. Biomass consumption by breeding seabirds in the western Indian Ocean: direct interactions with fisheries and implications for management. ICES J Mar Sci. 2014;71: 2589–2598.
12. Sinclair I, Langrand O. Birds of the Indian Ocean islands. Chamberlain. Struik Nature; 2003.
13. Feare CJ, Jaquemet S, Le Corre M. An inventory of Sooty Terns (Sterna fuscata) in the western Indian Ocean with special reference to threats and trends. Ostrich. 2007;78: 423–434.
14. Friesen VL, Burg TM, McCoy KD. Mechanisms of population differentiation in seabirds. Mol Ecol. 2007;16: 1765–85. 17444891
15. Le Corre M, Jaeger A, Pinet P, Kappes M a., Weimerskirch H, Catry T, et al. Tracking seabirds to identify potential marine protected areas in the tropical Western Indian Ocean. Biol Conserv. 2012;156: 83–93.
16. Lebarbenchon C, Brown JD, Luttrell MP, Stallknecht DE. Comparison of two commercial enzyme-linked immunosorbent assays for detection of influenza A virus antibodies. J Vet Diagn Invest. 2012;24: 161–5. doi: 10.1177/1040638711416626 21908267
17. Pedersen JC. Hemagglutination-inhibition test for avian influenza virus subtype identification and the detection and quantification of serum antibodies to avian influenza viruses. In: Spackman E, editor. Avian influenza virus. Humana Press, Totowa (NJ): USA; 2008.
18. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna A, editor. Vienna; 2012.
19. Lebarbenchon C, Jaeger A, Bastien M, Le Corre M, Dellagi K, Pascalis H. Absence of coronaviruses, paramyxoviruses, and influenza A viruses in seabirds in the Southwestern Indian Ocean. J Wildl Dis. 2013;49: 1056–1059. doi: 10.7589/2012-09-227 24502741
20. Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, et al. Development of a Real-Time Reverse Transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol. 2002;40: 3256–3260. 12202562
21. Tsukamoto K, Ashizawa H, Nakanishi K, Kaji N, Suzuki K, Okamatsu M, et al. Subtyping of avian influenza viruses H1 to H15 on the basis of hemagglutinin genes by PCR assay and molecular determination of pathogenic potential. J Clin Microbiol. 2008;46: 3048–3055. doi: 10.1128/JCM.02386-07 18596143
22. VanDalen KK, Anderson TD, Killian ML, Pedersen JC, Franklin AB, Piaggio AJ. Increased detection of influenza A H16 in the United States. Arch Virol. 2008;153: 1981–3. doi: 10.1007/s00705-008-0213-8 18825483
23. Lee M, Chang P, Shien J, Cheng M, Shieh HK. Identification and subtyping of avian influenza viruses by reverse transcription-PCR. J Virol Methods. 2001;97: 13–22. 11483213
24. Qiu B, Liu W, Hu S, Tang Y, Liu X. A reverse transcription-PCR for subtyping of the neuraminidase of avian influenza viruses. J Virol Methods. 2009;155: 193–198. doi: 10.1016/j.jviromet.2008.10.001 18984006
25. Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, Tatusova T, et al. The influenza virus resource at the National Center for Biotechnology Information. J Virol. 2008;82: 596–601. 17942553
26. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59: 307–21. doi: 10.1093/sysbio/syq010 20525638
27. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7: 214. 17996036
28. Bahl J, Vijaykrishna D, Holmes EC, Smith GJD, Guan Y. Gene flow and competitive exclusion of avian influenza A virus in natural reservoir hosts. Virology. 2009;390: 289–97. doi: 10.1016/j.virol.2009.05.002 19501380
29. Lebarbenchon C, Stallknecht DE. Host shifts and molecular evolution of H7 avian influenza virus hemagglutinin. Virol J. 2011;8: 328. doi: 10.1186/1743-422X-8-328 21711553
30. Shapiro B, Rambaut A, Drummond AJ. Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol Biol Evol. 2006;23: 7–9. 16177232
31. Drummond AJ, Rambaut A, Shapiro B, Pybus OG. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol. 2005;22: 1185–92. 15703244
32. Becker W. The isolation and classification of Tern virus: Influenza virus A/Tern/South Africa/1961. J Hyg Cambridge. 1966;64: 309–320. 5223681
33. Mackenzie JS, Edwards EC, Holmes RM, Hinshaw VS. Isolation of ortho- and paramyxoviruses from wild birds in Western Australia, and the characterization of novel influenza A viruses. Aust J Exp Biol Med Sci. 1984;62: 89–99. 6430260
34. Röhm C, Zhou N, Süss J, Mackenzie J, Webster RG. Characterization of a novel influenza hemagglutinin, H15: criteria for determination of influenza A subtypes. Virology. 1996;217: 508–16. 8610442
35. Brown JD, Luttrell MP, Berghaus RD, Kistler W, Keeler SP, Howey A, et al. Prevalence of antibodies to type A influenza virus in wild avian species using two serologic assays. J Wildl Dis. 2010;46: 896–911. 20688695
36. Feare CJ, Gill EL, Carty HE, Ayrton VJ. Habitat use by Seychelles sooty terns Sterna fuscata and implications for colony management. Biol Conserv. 1997; 69–76.
37. del Hoyo J, Elliott A, Sargatal J. Handbook of the Birds of the World, vol. 3: Hoatzin to Auks. Barcelona: Lynx Edicions; 1996.
38. Verhagen JH, Majoor F, Lexmond P, Vuong O, Kasemir G, Lutterop D, et al. Epidemiology of influenza A virus among black-headed gulls, the Netherlands, 2006–2010. Emerg Infect Dis. 2014;20: 138–41. doi: 10.3201/eid2001.130984 24377955
39. Wille M, Robertson GJ, Whitney H, Bishop MA, Runstadler JA, Lang AS. Extensive geographic mosaicism in avian influenza viruses from gulls in the northern hemisphere. PLOS One. 2011;6: e20664. doi: 10.1371/journal.pone.0020664 21697989
40. Sharp GB, Kawaoka Y, Jones DJ, Bean WJ, Pryor SP, Hinshaw V, et al. Coinfection of wild ducks by influenza A viruses: distribution patterns and biological significance. J Virol. 1997;71: 6128–35. 9223507
41. Hatchette TF, Walker D, Johnson C, Baker A, Pryor SP, Webster RG. Influenza A viruses in feral Canadian ducks: extensive reassortment in nature. J Gen Virol. 2004;85: 2327–37. 15269374
42. Dugan VG, Chen R, Spiro DJ, Sengamalay N, Zaborsky J, Ghedin E, et al. The evolutionary genetics and emergence of avian influenza viruses in wild birds. PLOS Pathog. 2008;4: e1000076. doi: 10.1371/journal.ppat.1000076 18516303
43. Lebarbenchon C, Sreevatsan S, Lefèvre T, Yang M, Ramakrishnan MA, Brown JD, et al. Reassortant influenza A viruses in wild duck populations: effects on viral shedding and persistence in water. Proc Biol Sci. 2012;279: 3967–75. doi: 10.1098/rspb.2012.1271 22859590
44. Jourdain E, Gauthier-Clerc M, Bicout DJ, Sabatier P. Bird migration routes and risk for pathogen dispersion into western Mediterranean wetlands. Emerg Infect Dis. 2007;13: 365–72. 17552088
45. Krauss S, Stallknecht DE, Negovetich NJ, Niles LJ, Webby RJ, Webster RG. Coincident ruddy turnstone migration and horseshoe crab spawning creates an ecological “hot spot” for influenza viruses. Proc Biol Sci. 2010;277: 3373–9. doi: 10.1098/rspb.2010.1090 20630885
46. Huang Y, Robertson GJ, Ojkic D, Whitney H, Lang AS. Diverse inter-continental and host lineage reassortant avian influenza A viruses in pelagic seabirds. Infect Genet Evol. 2014;22: 103–11. doi: 10.1016/j.meegid.2014.01.014 24462905
47. Huang Y, Wille M, Benkaroun J, Munro H, Bond AL, Fifield DA, et al. Perpetuation and reassortment of gull influenza A viruses in Atlantic North America. Virology. 2014;456–457: 353–63.
48. Cumming GS, Caron A, Abolnik C, Cattoli G, Bruinzeel LW, Burger CE, et al. The ecology of influenza A viruses in wild birds in Southern Africa. Ecohealth. 2011;8: 4–13. doi: 10.1007/s10393-011-0684-z 21516374
49. Gaidet N, Caron A, Cappelle J, Cumming GS, Balança G, Hammoumi S, et al. Understanding the ecological drivers of avian influenza virus infection in wildfowl: a continental-scale study across Africa. Proc Biol Sci. 2012;279: 1131–41. doi: 10.1098/rspb.2011.1417 21920984
50. Lebarbenchon C, Chang C, Grandhomme V, Dietrich M, Kayser Y, van der Werf S, et al. Avian influenza circulation in the Camargue (South of France) during the 2006–07 season. Avian Dis. 2010;54: 446–449. 20521676
51. Gaidet N, Newman SH, Hagemeijer W, Dodman T, Cappelle J, Hammoumi S, et al. Duck migration and past influenza A (H5N1) outbreak areas. Emerg Infect Dis. 2008;14: 1164–1166. doi: 10.3201/eid1407.071477 18598652
52. Lebarbenchon C. Maladies infectieuses et écosystèmes: écologie des virus influenza aviaires en Camargue. PhD Thesis. University of Montpellier II. 2008.
53. Gaidet N, Ould El Mamy AB, Cappelle J, Caron A, Cumming GS, Grosbois V, et al. Investigating avian influenza infection hotspots in old-world shorebirds. PLOS One. 2012;7: e46049. doi: 10.1371/journal.pone.0046049 23029383
54. Munster VJ, Baas C, Lexmond P, Waldenström J, Wallensten A, Fransson T, et al. Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLOS Pathog. 2007;3: e61. 17500589
55. Wilcox BR, Knutsen GA, Berdeen J, Goekjian V, Poulson R, Goyal S, et al. Influenza-A viruses in ducks in Northwestern Minnesota: fine scale spatial and temporal variation in prevalence and subtype diversity. PLOS One. 2011;6: e24010. doi: 10.1371/journal.pone.0024010 21931636
56. Lebarbenchon C, Chang C- M, Gauthier-Clerc M, Thomas F, Renaud F, van der Werf S. H9N2 avian influenza virus in a Mediterranean gull. J Mol Genet Med. 2008;3: 121–3. 19565016
57. Jackwood MW, Stallknecht DE. Molecular epidemiologic studies on North American H9 avian influenza virus isolates from waterfowl and shorebirds. Avian Dis. 2007;51: 448–50. 17494604
58. Li KS, Xu KM, Peiris JSM, Poon LLM, Yu KZ, Yuen Y, et al. Characterization of H9 subtype influenza viruses from the ducks of Southern China: a candidate for the next influenza pandemic in humans? J Virol. 2003;77: 6988–6994. 12768017
59. Guan Y, Shortridge KF, Krauss S, Webster RG. Molecular characterization of H9N2 influenza viruses: Were they the donors of the “internal” genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci. 1999;96: 9363–9367. 10430948
60. Peiris M, Yuen KY, Leung CW, Chan KH, Ip PL, Lai RW, et al. Human infection with influenza H9N2. Lancet. 1999;354: 916–7. 10489954
61. Shanmuganatham K, Feeroz MM, Jones-Engel L, Smith GJD, Fourment M, Walker D, et al. Antigenic and molecular characterization of avian influenza A(H9N2) viruses, Bangladesh. Emerg Infect Dis. 2013;19: 1393–1402.
62. Negovetich NJ, Feeroz MM, Jones-Engel L, Walker D, Alam SMR, Hasan K, et al. Live bird markets of Bangladesh: H9N2 viruses and the near absence of highly pathogenic H5N1 influenza. PLOS One. 2011;6: e19311. doi: 10.1371/journal.pone.0019311 21541296
63. Tosh C, Nagarajan S, Behera P, Rajukumar K, Purohit K, Kamal RP, et al. Genetic analysis of H9N2 avian influenza viruses isolated from India. Arch Virol. 2008;153: 1433–9. doi: 10.1007/s00705-008-0131-9 18568381
64. Jaeger A, Summers R, Lebarbenchon C, Larose C, Le Corre M, Feare C. Geolocation reveals migration patterns of a superabundant tropical seabird species, the sooty tern Onychoprion fuscatus, from a breeding colony on Bird Island, Seychelles. In preparation.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 5
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Human Cytomegalovirus miR-UL112-3p Targets TLR2 and Modulates the TLR2/IRAK1/NFκB Signaling Pathway
- Paradoxical Immune Responses in Non-HIV Cryptococcal Meningitis
- Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance
- Fob1 and Fob2 Proteins Are Virulence Determinants of via Facilitating Iron Uptake from Ferrioxamine