Ananlysis of Phosphoproteins and Signalling Pathwaysby Quantitative Proteomics
Authors:
M. Pjechová 1; L. Hernychová 1; P. Tomašec 1,2; G. W. Wilkinson 1,2; B. Vojtěšek 1
Authors place of work:
Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno
1; Department of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, United Kingdom
2
Published in the journal:
Klin Onkol 2014; 27(Supplementum): 116-120
Summary
Protein phosphorylation is a key regulator in cellular signaling pathways. It is involved in most cellular events in which interplay between phosphatases and kinases strictly controls biological processes, such as differentiation, proliferation and apoptosis. Altered or defective signaling pathways often result in various diseases, emphasizing the importance of studying the phosphoproteome. The abundance of phosphoproteins in the proteome is often very low, which requires specific and highly sensitive approaches. By using quantitative proteomics methods, we are able to analyze changes in abundance of proteins and their posttranslational modifications and then changes in signaling pathways. In this review, we describe quantitative proteomics methods, which could be used for study of phosphoproteins and their connection in signaling pathways.
Key words:
proteomics – phosphoproteins – signaling pathways
This work was supported by the European Regional Development Fund and the State Budget of the Czech Republic (RECAMO, CZ.1.05/2.1.00/03.0101) and by MH CZ – DRO (MMCI, 00209805).
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Submitted:
30. 1. 2014
Accepted:
14. 4. 2014
Zdroje
1. Thingholm TE, Jensen ON, Larsen MR. Analytical strategies for phosphoproteomics. Proteomics 2009; 9(6): 1451– 1468. doi: 10.1002/ pmic.200800454.
2. Alpert AJ. Hydrophilic‑ interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr 1990; 499: 177– 196.
3. Larsen MR, Thingholm TE, Jensen ON et al. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 2005; 4(7): 873– 886.
4. Oda Y, Huang K, Cross FR et al. Accurate quantitation of protein expression and site‑ specific phosphorylation. Proc Natl Acad Sci USA 1999; 96(12): 6591– 6596.
5. Gygi SP, Rist B, Gerber SA et al. Quantitative analysis of complex protein mixtures using isotope‑ coded affinity tags. Nature Biotechnol 1999; 17: 994– 999.
6. Sap KA, Demmers JA (eds). Labeling Methods in Mass Spectrometry Based Quantitative Proteomics [monograph on the Internet]. Integrative Proteomics; 2012 [cited 2014 January 3]. Available from: http:/ / cdn.intechopen.com/ pdfs‑ wm/ 29631.pdf.
7. Hsu JL, Huang SY, Chow NH et al. Stable‑ isotope dimethyl labeling for quantitative proteomics. Anal Chem 2003; 75(24): 6843– 6852.
8. Boersema PJ, Aye TT, van Veen TA et al. Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics 2008; 8(22): 4624– 4632. doi: 10.1002/ pmic.200800297.
9. Thompson A, Schafer J, Kuhn K et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/ MS. Anal Chem 2003; 75(8): 1895– 1904.
10. Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in saccharomyces cerevisiae using amine‑ reactive isobaric tagging reagents. Mol Cell Proteomics 2004; 3(12): 1154– 1169.
11. Licker V, Patel V, Ward M (eds). Characterisation of human cerebrospinal fluid (CSF) after tandem mass tag (TMT0) labelling [monograph on the Internet]. Universtité de Genéve; 2008 [cited 2014 January 3]. Available from: http:/ / www.mpb.unige.ch/ reports/ rap_VirginieLicker.pdf.
12. Nita‑ Lazar A, Saito‑ Benz H, White FM. Quantitative phosphoproteomics by mass spectrometry: past, present, and future. Proteomics 2008; 8(21): 4433– 4443. doi: 10.1002/ pmic.200800231.
13. Bantscheff M, Schirle M, Sweetman G et al. Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 2007; 389(4): 1017– 1031.
14. Wiśniewski JR, Zougman A, Nagaraj N et al. Universal sample preparation method for proteome analysis. Nat Methods 2009; 6(5): 359– 362. doi: 10.1038/ nmeth.1322.
15. Btk.fi [homepage on the Internet]. Turku: Centre for Biotechnology, Finland [cited 2014 January 5]. Available from: http:/ / www.btk.fi/ fileadmin/ Page_files/ proteomics/ PDF‑ files/ Protocols/ In_solution_trypsin_digestion.pdf.
16. Vgn.uvm.edu [homepage on the Internet]. Vermont Genetics Network. University of Vermont [cited 2014 January] Available from: http:/ / vgn.uvm.edu/ outreach/ documents/ Garfin_IEF_WebArticle9– 07.pdf.
17. Nationaldiagnostics.com [homepage on the Internet]. Atlanta: National Diagnostics; Georgia; c2011 [cited 2014 January 5]. Available from: https:/ / www.nationaldiagnostics.com/ electrophoresis/ article/ staining‑ protein‑gels‑ coomassie‑ blue.
8. Shevchenko A, Tomas H, Havlis J et al. In‑ gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 2006; 1(6): 2856– 2860.
19. Alpert AJ. Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal Chem 2008; 80(1): 62– 76.
20. Steen H, Jebanathirajah JA, Rush J et al. Phosphorylation analysis by mass spectrometry. Mol Cell Proteomics 2006; 5(1): 172– 181.
21. Swaney DL, McAlister GC, Coon JJ. Decision tree‑driven tandem mass spectrometry for shotgun proteomics. Nat Methods 2008; 5(11): 959– 964. doi: 10.1038/ /nmeth.1260.
22. Molina H, Horn DM, Tang N et al. Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA 2007; 104(7): 2199– 2204.
23. Sweet SM, Bailey CM, Cunningham DL et al. Large scale localization of protein phosphorylation by use of electron capture dissociation mass spectrometry. Mol Cell Proteomics 2009; 8(5): 904– 912. doi: 10.1074/ mcp.M800451- MCP200.
24. Uniprot.org [homepage on the Internet] Uniprot, c2002– 2014 [cited 2014 January 5]. Available from: http:/ / www.uniprot.org/ .
25. Eng JK, McCormack AL, Yates JR. Sequest algorithmpublication: an approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 1994; 5(11): 976– 989. doi: 10.1016/ 1044- 0305(94)80016- 2.
26. Taus T, Köcher T, Pichler P et al. Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res 2011; 10(12): 5354– 5362. doi: 10.1021/ pr200611n.
27. MaxQuant.org [homepage on the Internet]. MaxQuant. Max planck institute of biochemistry. Martinsried: Germany; c2013 [cited 2014 January 7]. Available from: http:/ / www.maxquant.org/ .
28. Skyline.gs.washington.edu [homepage on the Internet]. MacCoss Lab Software. Washington: University of Washington, Seattle; c2014 [cited 2014 January 7]. Available from: https:/ / skyline.gs.washington.edu/ labkey/ wiki/ home/ software/ Skyline/ page.view?name=defaude.
29. Ingenuity.com [homepage on the Internet]. Ingenuity. CA: Redwood City [cited 2014 January 7]. Available from: http:/ / www.ingenuity.com/ .
30. David.abcc.ncifcrf.gov [homepage on the Internet]. DAVID Bioinformatics Resources 6.7. National institute of allergy and infectious diseases, Frederick, MD [cited 2014 January 7]. Available from: http:/ / david.abcc.ncifcrf.gov/ home.jsp.
31. van Iersel MP, Kelder T, Pico AR et al. Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics 2008; 9: 399. doi: 10.1186/ 1471- 2105- 9-399.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2014 Číslo Supplementum
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Najčítanejšie v tomto čísle
- Protein Expression and Purification
- Methods for Studying Tumor Cell Migration and Invasiveness
- Next Generation Sequencing – Application in Clinical Practice
- Analysis of Protein Using Mass Spectrometry