Electrochemical Analysis of Nucleic Acids, Proteins and Polysaccharides in Biomedicine
Authors:
M. Bartošík 1; E. Paleček 1,2; B. Vojtěšek 1
Authors place of work:
Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno
1; Biofyzikální ústav AV ČR, v. v. i., Brno
2
Published in the journal:
Klin Onkol 2014; 27(Supplementum): 53-60
Summary
Electrochemical analysis of nucleic acids, proteins and polysaccharides represents an interesting, although not widely spread alternative to current methods based predominantly on optical detection because it offers a relatively inexpensive, fast and instrumentally simple detection of parallel samples on miniaturized chips, ideal for personalized medicine of the 21st century. Nucleic acid electrochemistry enables, for example, detection of specific DNA sequences (for determination of genes or presence of bacteria and viruses, etc.), DNA damage analysis and interaction with other molecules, DNA methylation or detection of microRNAs as potential cancer biomarkers. In the electrochemistry of proteins, great emphasis is put on construction of immunosensors for capturing specific proteins (antigens) using antibodies, suitable for diagnostics. From a biophysical point of view, intrinsic electrocatalytic signal of proteins sensitive to conformational changes could be useful in discrimination of mutant proteins (e. g. p53), native and aggregated forms (α-synuclein in Parkinson‘s disease) or for studies of protein interactions with low molecular‑ weight ligands and DNA. Due to an increased interest of scientists in glycoproteins, new electrochemical papers emerged aiming at detection of oligosaccharides and polysaccharides (i.e. glycans, when part of the protein). These assays employ for instance electroactive labels specific for saccharides or lectin biosensors using lectins which strongly bind glycans. Electrochemical analysis thus appears as an interesting tool in current genomics, proteomics and glycomics, as well as for cancer diagnostics.
Key words:
electrochemistry – electrodes – nucleic acid hybridization – DNA sensors – electrocatalysis – biological markers
This work was supported by the Czech Science Foundation projects No. P301/11/2055 (to EP) and 14-24931P (to MB), by the European Regional Development Fund and the State Budget of the Czech Republic (RECAMO, CZ.1.05/2.1.00/03.0101) and by MH CZ – DRO (MMCI, 00209805).
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Submitted:
15. 1. 2014
Accepted:
27. 2. 2014
Zdroje
1. Watson JD, Crick FHC. Molecular structure of nucleic acids – a structure for deoxyribose nucleic acid. Nature 1953; 171(4356): 737– 738.
2. Berg H. Polarographische Untersuchungen an Nucleinsauren und Nucleasen. I. Mitt. Polarographische Nachweis von Proteinen neben Nucleinsauren. Biochem Z 1957; 329(3): 274– 276.
3. Palecek E. Oszillographische Polarographie der Nucleinsauren und ihrer Bestandteile. Naturwiss 1958; 45(8): 186– 187.
4. Palecek E. Oscillographic polarography of highly polymerized deoxyribonucleic acid. Nature 1960; 188: 656– 657.
5. Palecek E. Polarographic behaviour of native and denatured deoxyribonucleic acids. J Mol Biol 1966; 20(2): 263– 281.
6. Palecek E. The polarographic behaviour of double‑helical DNA containing single‑strand breaks. Biochim Biophys Acta 1967; 145(2): 410– 417.
7. Hillson PJ. Interactions between dye ions and substances of high molecular weight – a polarographic investigation. J Soc Dyers Colour 1967; 83(5): 186.
8. Brabec V, Dryhurst G. Electrochemical oxidation of polyadenylic acid at graphite electrodes. J Electroanal Chem 1978; 91(2): 219– 229.
9. Lukasova E, Jelen F, Palecek E. Electrochemistry of osmium nucleic‑ acid complexes – a probe for single‑stranded and distorted double‑stranded regions in DNA. Gen Physiol Biophys 1982; 1(1): 53– 70.
10. Palecek E, Postbieglova I. Adsorptive stripping voltammetry of biomacromolecules with transfer of the adsorbed layer. J Electroanal Chem 1986; 214(1): 359– 371.
11. Palecek E, Bartosik M. Electrochemistry of nucleic acids. Chem Rev 2012; 112(6): 3427– 3481.
12. Lee AC, Dai ZY, Chen BW et al. Electrochemical branched‑ DNA assay for polymerase chain reaction‑free detection and quantification of oncogenes in messenger RNA. Anal Chem 2008; 80(24): 9402– 9410. doi: 10.1021/ ac801263r.
13. Horakova P, Simkova E, Vychodilova Z et al. Detection of single nucleotide polymorphisms in p53 mutation hotspots and expression of mutant p53 in human cell lines using an enzyme‑linked electrochemical assay. Electroanalysis 2009; 21(15): 1723– 1729.
14. Hou P, Ji M, Ge C et al. Detection of methylation of human p16(Ink4a) gene 5‘- CpG islands by electrochemical method coupled with linker‑PCR. Nucleic Acids Res 2003; 31(16): e92.
15. Ertl P, Emrich CA, Singhal P et al. Capillary electrophoresis chips with a sheath‑ flow supported electrochemical detection system. Anal Chem 2004; 76(13): 3749– 3755.
16. Yang IV, Thorp HH. Modification of indium tin oxide electrodes with repeat polynucleotides: electrochemical detection of trinucleotide repeat expansion. Anal Chem 2001; 73(21): 5316– 5322.
17. Fojta M, Havran L, Vojtiskova M et al. Electrochemical detection of DNA triplet repeat expansion. J Am Chem Soc 2004; 126(21): 6532– 6533.
18. Ariksoysal DO, Karadeniz H, Erdem A et al. Label‑free electrochemical hybridization genosensor for the detection of hepatitis B virus genotype on the development of lamivudine resistance. Anal Chem 2005; 77(15): 4908– 4917.
19. Farabullini F, Lucarelli F, Palchetti I et al. Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants. Biosens Bioelectron 2007; 22(7): 1544– 1549.
20. Campuzano S, Kuralay F, Lobo‑ Castanon MJ et al. Ternary monolayers as DNA recognition interfaces for direct and sensitive electrochemical detection in untreated clinical samples. Biosens Bioelectron 2011; 26(8): 3577– 3583. doi: 10.1016/ j.bios.2011.02.004.
21. Carpini G, Lucarelli F, Marrazza G et al. Oligonucleotide‑ modified screen‑ printed gold electrodes for enzyme‑ amplified sensing of nucleic acids. Biosens Bioelectron 2004; 20(2): 167– 175.
22. Fojta M. Electrochemical sensors for DNA interactions and damage. Electroanalysis 2002; 14(21): 1449– 1463.
23. Brabec V. DNA sensor for the determination of antitumor platinum compounds. Electrochim Acta 2000; 45(18): 2929– 2932.
24. Horakova P, Tesnohlidkova L, Havran L et al. Determination of the level of DNA modification with cisplatin by catalytic hydrogen evolution at mercury‑based electrodes. Anal Chem 2010; 82(7): 2969– 2976. doi: 10.1021/ ac902987x.
25. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 2008; 9(6): 465– 476. doi: 10.1038/ nrg2341.
26. Sato S, Tsueda M, Kanezaki Y et al. Detection of an aberrant methylation of CDH4 gene in PCR product by ferrocenylnaphthalene diimide‑based electrochemical hybridization assay. Anal Chim Acta 2012; 715: 42– 48. doi: 10.1016/ j.aca.2011.12.010.
27. Ioannou A, Alexiadou D, Kouidou S et al. Use of adsorptive transfer stripping voltammetry for analyzing variations of cytosine methylation in DNA. Electroanalysis 2009; 21(24): 2685– 2692.
28. Kato D, Sekioka N, Ueda A et al. A nanocarbon film electrode as a platform for exploring DNA methylation. J Am Chem Soc 2008; 130(12): 3716– 3717. doi: 10.1021/ ja710536p.
29. Bartosik M, Fojta M, Palecek E. Electrochemical detection of 5- methylcytosine in bisulfite‑treated DNA. Electrochim Acta 2012; 78: 75– 81.
30. Iorio MV, Croce CM. microRNA involvement in human cancer. Carcinogenesis 2012; 33(6): 1126– 1133. doi: 10.1093/ carcin/ bgs140.
31. Wei F, Wang J, Liao W et al. Electrochemical detection of low‑ copy number salivary RNA based on specific signal amplification with a hairpin probe. Nucleic Acids Res 2008; 36(11): e65. doi: 10.1093/ nar/ gkn299.
32. Hamidi‑ Asl E, Palchetti I, Hasheminejad E et al. A review on the electrochemical biosensors for determination of microRNAs. Talanta 2013; 115: 74– 83. doi: 10.1016/ j.talanta.2013.03.061.
33. Kilic T, Topkaya SN, Ariksoysal DO et al. Electrochemical based detection of microRNA, mir21 in breast cancer cells. Biosens Bioelectron 2012; 38(1): 195– 201. doi: 10.1016/ j.bios.2012.05.031.
34. Wang ZW, Zhang J, Guo Y et al. A novel electrically magnetic‑ controllable electrochemical biosensor for the ultra sensitive and specific detection of attomolar level oral cancer‑related microRNA. Biosens Bioelectron 2013; 45: 108– 113. doi: 10.1016/ j.bios.2013.02.007.
35. Bettazzi F, Hamid‑ Asl E, Esposito CL et al. Electrochemical detection of miRNA‑ 222 by use of a magnetic bead‑based bioassay. Anal Bioanal Chem 2013; 405(2– 3): 1025– 1034. doi: 10.1007/ s00216- 012- 6476- 7.
36. Wang J, Yi X, Tang H et al. Direct quantification of microRNA at low picomolar level in sera of glioma patients using a competitive hybridization followed by amplified voltammetric detection. Anal Chem 2012; 84(15): 6400– 6406. doi: 10.1021/ ac203368h.
37. Trefulka M, Bartosik M, Palecek E. Facile end‑labeling of RNA with electroactive Os(VI) complexes. Electrochem Commun 2010; 12: 1760– 1763.
38. Bartosik M, Trefulka M, Hrstka R et al. Os(VI)bipy‑based electrochemical assay for detection of specific microRNAsas potential cancer biomarkers. Electrochem Commun 2013; 33: 55– 58.
39. Herles F, Vancura A. A research on the cause of a characteristic ‘‘wave’’ on the polarographic curve of human serum. Bull int Acad Sci Boheme 1932; 33: 119– 120.
40. Heyrovsky J, Babicka J. Polarographic studies with the dropping mercury cathode. Part XIII. The effect of albumins. Collect Czech Chem Commun 1930; 2: 370.
41. Palecek E, Heyrovsky M, Janik B et al. From DC polarographic presodium wave of proteins to electrochemistry of biomacromolecules. Collect Czech Chem Commun 2009; 74(11– 12): 1739– 1755.
42. Kizek R, Vacek J, Trnkova L et al. Application of catalytic reactions on a mercury electrode for electrochemical detection of metallothioneins. Chem Listy 2004; 98(4): 166– 173.
43. Ostatna V, Kuralay F, Trnkova L et al. Constant current chronopotentiometry and voltammetry of native and denatured serum albumin at mercury and carbon electrodes. Electroanalysis 2008; 20(13): 1406– 1413.
44. Palecek E, Ostatna V, Masarik M et al. Changes in interfacial properties of alpha‑ synuclein preceding its aggregation. Analyst 2008; 133(1): 76– 84.
45. Bartosik M, Ostatna V, Palecek E. Electrochemistry of riboflavin‑binding protein and its interaction with riboflavin. Bioelectrochemistry 2009; 76(1– 2): 70– 75. doi: 10.1016/ j.bioelechem.2009.04.006.
46. Palecek E, Ostatna V, Cernocka H et al. Electrocatalytic monitoring of metal binding and mutation‑induced conformational changes in p53 at picomole level. J Am Chem Soc 2011; 133(18): 7190– 7196. doi: 10.1021/ ja201006s.
47. Dorcak V, Palecek E. Electrochemical determination of thioredoxin redox states. Anal Chem 2009; 81(4): 1543– 1548. doi: 10.1021/ ac802274p.
48. Kerman K, Morita Y, Takamura Y et al. Escherichia coli single‑strand binding protein‑DNA interactions on carbon nanotube‑ modified electrodes from a label‑free electrochemical hybridization sensor. Anal Bioanal Chem 2005; 381(6): 1114– 1121.
49. Kerman K, Vestergaard M, Chikae M et al. Label‑free electrochemical detection of the phosphorylated and non‑phosphorylated forms of peptides based on tyrosine oxidation. Electrochem Commun 2007; 9(5): 976– 980.
50. Zatloukalova M, Orolinova E, Kubala M et al. Electrochemical determination of transmembrane protein Na+/ K+– ATPase and Its cytoplasmic loop C45. Electroanalysis 2012; 24(8): 1758– 1765.
51. Wang J, Rivas G, Cai XH et al. Trace measurements of insulin by potentiometric stripping analysis at carbon paste electrodes. Electroanalysis 1996; 8(10): 902– 906.
52. Masarik M, Stobiecka A, Kizek R et al. Sensitive electrochemical detection of native and aggregated a‑ synuclein protein involved in Parkinson‘s disease. Electroanalysis 2004; 16(13– 14): 1172– 1181.
53. Pei XM, Zhang B, Tang J et al. Sandwich‑type immunosensors and immunoassays exploiting nanostructure labels: A review. Anal Chim Acta 2013; 758: 1– 18. doi: 10.1016/ j.aca.2012.10.060.
54. Wan Y, Su Y, Zhu XH et al. Development of electrochemical immunosensors towards point of care diagnostics. Biosens Bioelectron 2013; 47: 1– 11. doi: 10.1016/ j.bios.2013.02.045.
55. Liu GD, Lin YH. Nanomaterial labels in electrochemical immunosensors and immunoassays. Talanta 2007; 74(3): 308– 317. doi: 10.1016/ j.talanta.2007.10.014.
56. Dijksma M, Kamp B, Hoogvliet JC et al. Development of an electrochemical immunosensor for direct detection of interferon‑ γ at the attomolar level. Anal Chem 2001; 73(5): 901– 907.
57. Munge BS, Coffey AL, Doucette JM et al. Nanostructured immunosensor for attomolar detection of cancer biomarker interleukin‑8 using massively labeled superparamagnetic particles. Angew Chem Int Ed 2011; 50(34): 7915– 7918. doi: 10.1002/ anie.201102941.
58. Hong P, Li WL, Li JM. Applications of aptasensors in clinical diagnostics. Sensors 2012; 12(2): 1181– 1193. doi: 10.3390/ s120201181.
59. Mascini M, Palchetti I, Tombelli S. Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. Angew Chem Int Ed 2012; 51(6): 1316– 1332. doi: 10.1002/ anie.201006630.
60. Xu Y, Cheng GF, He PG et al. A review: electrochemical aptasensors with various detection strategies. Electroanalysis 2009; 21(11): 1251– 1259.
61. Hianik T, Wang J. Electrochemical aptasensors – recent achievements and perspectives. Electroanalysis 2009; 21(11): 1223– 1235.
62. Rusling JF, Kumar CV, Gutkind JS et al. Measurement of biomarker proteins for point‑ of‑ care early detection and monitoring of cancer. Analyst 2010; 135(10): 2496– 2511. doi: 10.1039/ c0an00204f.
63. Chikkaveeraiah BV, Bhirde AA, Morgan NY et al. Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 2012; 6(8): 6546– 6561. doi: 10.1021/ nn3023969.
64. Luo X, Davis JJ. Electrical biosensors and the label free detection of protein disease biomarkers. Chem Soc Rev 2013; 42(13): 5944– 5962. doi: 10.1039/ c3cs60077g.
65. Rusling JF. Multiplexed electrochemical protein detection and translation to personalized cancer diagnostics. Anal Chem 2013; 85(11): 5304– 5310. doi: 10.1021/ ac401058v.
66. Malhotra R, Patel V, Chikkaveeraiah BV et al. Ultrasensitive detection of cancer biomarkers in the clinic by use of a nanostructured microfluidic array. Anal Chem 2012; 84(14): 6249– 6255. doi: 10.1021/ ac301392g.
67. Jelinek R, Kolusheva S. Carbohydrate biosensors. Chem Rev 2004; 104(12): 5987– 6015.
68. Bertok T, Katrlik J, Gemeiner P et al. Electrochemical lectin based biosensors as a label‑free tool in glycomics. Microchim Acta 2013; 180(1– 2): 1– 13.
69. Strmecki S, Plavsic M, Cosovic B et al. Constant current chronopotentiometric stripping of sulphated polysaccharides. Electrochem Commun 2009; 11: 2032– 2035.
70. Palecek E, Rimankova L. Chitosan catalyzes hydrogen evolution at mercury electrodes. Electrochem Commun 2014. In press.
71. Palecek E, Trefulka M. Electrocatalytic detection of polysaccharides at picomolar concentrations. Analyst 2011; 136(2): 321– 326. doi: 10.1039/ c0an00681e.
72. Trefulka M, Palecek E. Voltammetry of Os(VI)- modified polysaccharides at carbon electrodes. Electroanalysis 2009; 21(15): 1763– 1766.
73. Yeo J, Park JY, Bae WJ et al. Label‑free electrochemical detection of the p53 core domain protein on its antibody immobilized electrode. Anal Chem 2009; 81(12): 4770– 4777. doi: 10.1021/ ac900301h.
74. Zheng GF, Patolsky F, Cui Y et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 2005; 23(10): 1294– 1301.
75. Sezginturk MK, Uygun ZO. An impedimetric vascular endothelial growth factor biosensor‑based PAMAM/ cysteamine‑ modified gold electrode for monitoring of tumor growth. Anal Biochem 2012; 423(2): 277– 285. doi: 10.1016/ j.ab.2011.12.049.
76. Hou L, Cui Y, Xu M et al. Graphene oxide‑ labeled sandwich‑type impedimetric immunoassay with sensitive enhancement based on enzymatic 4- chloro‑1- naphthol oxidation. Biosens Bioelectron 2013; 47: 149– 156. doi: 10.1016/ j.bios.2013.02.035.
77. Ertl P, Wagner M, Corton E et al. Rapid identification of viable Escherichia coli subspecies with an electrochemical screen‑ printed biosensor array. Biosens Bioelectron 2003; 18(7): 907– 916.
78. Ding L, Ji Q, Qian R et al. Lectin‑based nanoprobes functionalized with enzyme for highly sensitive electrochemical monitoring of dynamic carbohydrate expression on living cells. Anal Chem 2010; 82(4): 1292– 1298. doi: 10.1021/ ac902285q.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2014 Číslo Supplementum
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
- Obstacle Called Vasospasm: Which Solution Is Most Effective in Microsurgery and How to Pharmacologically Assist It?
Najčítanejšie v tomto čísle
- Protein Expression and Purification
- Methods for Studying Tumor Cell Migration and Invasiveness
- Next Generation Sequencing – Application in Clinical Practice
- Analysis of Protein Using Mass Spectrometry