„Technetium Crisis“ – Causes, Possible Solutions and Consequences for Planar Scintigraphy and SPECT Diagnostics
Authors:
J. Adam 1,2; J. Kadeřávek 2; F. Kužel 2; J. Vašina 3; Z. Řehák 1,3
Authors place of work:
Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno
1; ÚJV Řež, a. s., Husinec‑ Řež, Česká republika
2; Oddělení nukleární medicíny, Masarykův onkologický ústav, Brno
3
Published in the journal:
Klin Onkol 2014; 27(Supplementum): 137-142
Summary
Nuclear medicine is an important field of nuclear medicine, especially thanks to its role in in vivo imaging of important processes in human organism. An overwhelming majority of nuclear medicine examinations comprises of planar scintigraphy and single photon emission computed tomography, for decades relying on the labeling by metastable technetium nuclide (99mTc), used with a great diversity of ligands for various applications. Nuclear medicine departments utilize commercially available molybdenum‑ technetium generators, being able to elute the nuclide at any time and prepare the radiopharmaceutical. The mother nuclide, molybdenum-99 (99Mo), is produced in just a handful of places around the world. The production places are without exception research nuclear reactors working far past their life expectancy. A concurrent temporary shutdown of two of them in the year 2009 caused a critical worldwide shortage of 99mTc. An unavoidable permanent shutdown of part of these capacities in the second decade of the 21st century will cause the second, and this time rather permanent ”technetium crisis”. The article focuses on history, present, potential future and possible solutions in regard to SPECT diagnostics.
Key words:
nuclear medicine – tomography, emission-computed, single-photon – radiopharmaceuticals – technetium – technetium crisis
This work was supported by the European Regional Development Fund and the State Budget of the Czech Republic (RECAMO, CZ.1.05/2.1.00/03.0101) and by MH CZ – DRO (MMCI, 00209805).
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Submitted:
11. 1. 2014
Accepted:
3. 4. 2014
Zdroje
1. Segrè E, Seaborg GT. Nuclear Isomerism in Element 43. Phys Rev 1938; 54(9): 772– 772.
2. Segrè E, Wu CS. Some fission products of uranium. Phys Rev 1940; 57: 552– 552.
3. Richards P, Tucker WD, Srivastava SC. Technetium‑ 99m: an historical perspective. Int J Appl Radiat Isot 1982; 33(10): 793– 799.
4. Sorensen LB, Archambault M. Visualization of the liver by scanning with Mo99 (molybdate) as tracer. J Lab Clin Med 1963; 62: 330– 340.
5. Herbert R, Kulke W, Shepherd RT. The use of technetium 99m as a clinical tracer element. Postgrad Med J 1965; 41(481): 656– 662.
6. Stang LG, Richards P. Tailoring the isotope to the need. Nucleonics 1964; 22(1): 146– 148.
7. Harper PV, Andros G, Lathrop K. Preliminary observations on the use of six‑ hour 99mTc as a tracer in biology and medicine. Semiannual Report of the Argonne Cancer Research Hospital 1962; 18: 76– 87.
8. Harper PV, Beck R, Charleston D et al. Optimization of a scanning method using Tc99m. Nucleonics 1964; 22: 50– 54.
9. Smith EM. Properties, uses, radiochemical purity and calibration of Tc‑ 99m. J Nucl Med 1964; 5(11): 871– 882.
10. Smith EM. Internal dose calculation for 99mTc. J Nucl Med 1965; 6(4): 231– 251.
11. Eckelman WC, Coursey BM (eds). Technetium – 99m: generators, chemistry and preparation of radiopharmaceuticals. Oxford: Pergamon 1982.
12. Eckelman WC. Unparalleled contribution of technetium‑ 99m to medicine over 5 decades. JACC Cardiovasc Imaging 2012; 2(3): 364– 368. doi: 10.1016/ j.jcmg.2008.12.013.
13. Ruth T. Accelerating production of medical isotopes. Nature 2009; 457(7229): 536– 537. doi: 10.1038/ 457536a.
14. Thomas GS, Maddahi J. The technetium shortage. J Nucl Cardiol 2010; 17(6): 993– 998. doi: 10.1007/ /s12350- 010- 9281- 8.
15. de Aidy EJ. The high flux reactor in petten resumes the vital roles of production of medical radioisotopes and nuclear research. Tijdschrift voor nucleaire geneeskunde 2010; 32(4): 586– 591.
16. Hansell C. Nuclear medicine‘s double hazard: imperiled treatment and the risk ofterrorism“. The Nonproliferation Review 2008; 15(2): 185– 208.
17. Pillai MR, Dash A, Knapp FF Jr. Sustained availability of 99mTc: possible paths forward. J Nucl Med 2013; 54(2): 313– 323. doi: 10.2967/ jnumed.112.110338.
18. Magnus B. Over budget, overdue and, perhaps, overdesigned. CMAJ 2008; 178(7): 813– 814. doi: 10.1503/ cmaj.080320.
19. Scholten B, Lambrecht RM, Cogneau M et al. Excitation functions for the cyclotron production of 99mTc and 99Mo. Appl Radiat Isot 1999; 51(1): 69– 80.
20. Takács S, Szűcs Z, Tárkányi F et al. Evaluation of proton induced reactions on 100Mo: New cross sections for production of 99mTc and 99Mo. Radioanal Nucl Ch 2003; 257(1): 195– 201.
21. Celler A, Hou X, Bénard F et al. Theoretical modeling of yields for proton‑induced reactions on natural and enriched molybdenum targets. Phys Med Biol 2011; 56(17): 5469– 5484. doi: 10.1088/ 0031- 9155/ 56/ 17/ 002.
22. Beaver JE, Hupf HB. „Production of 99mTc on a medical cyclotron: a feasibility study. J Nucl Med 1971; 12(11): 739– 741.
23. Guérin B, Tremblay S, Rodrigue S et al. Cyclotron production of 99mTc: an approach to the medical isotope crisis. J Nucl Med 2010; 51(4): 13N–16N.
24. Alary B (ed.). Cyclotron facility revolutionizes medical isotope manufacturing [monograph on the Internet]. Canada: University of Alberta; 2013 [cited 2014 February]. Available from: http:/ / news.ualberta.ca/ newsarticles/ 2013/ july/ cyclotron‑ facility‑ revolutionizes‑ medical‑ isotope‑ manufacturing.
25. Lougheed T. Cyclotron production of medical isotopes scales up. CMAJ 2013; 185(11): 947. doi: 10.1503/ cmaj.109– 4525.
26. Lebeda O, Fikrle M. New measurement of excitation functions for (d,x) reactions on (nat)Mo with special regard to the formation of (95m)Tc, (96m+ g)Tc, (99m)Tc and (99)Mo. Appl Radiat Isot 2010; 68(12): 2425– 2432. doi: 10.1016/ j.apradiso.2010.07.007.
27. Lebeda O, Pruszyński M. New measurement of excitation functions for (p,x) reactions on (nat)Mo with special regard to the formation of (95m)Tc, (96m+ g)Tc, (99m)Tc and (99)Mo. Appl Radiat Isot 2010; 68(12): 2355– 2365. doi: 10.1016/ j.apradiso.2010.05.011.
28. Lebeda O, van Lier EJ, Štursa J et al. Assessment of radionuclidic impurities in cyclotron produced (99m)Tc. Nucl Med Biol 2012; 39(8): 1286– 1291. doi: 10.1016/ j.nucmedbio.2012.06.009.
29. Marcassa C, Galli M, Temporelli PL et al. Technetium‑ 99m sestamibi tomographic evaluation of residual ischemia after anterior myocardial infarction. J Am Coll Cardiol 1995; 25(3): 590– 596.
30. Dilsizian V, Narula J. Seeking remedy for Molly‘s woe: time for a thallium pill? JACC Cardiovasc Imaging 2009; 2(3): 375– 377. doi: 10.1016/ j.jcmg.2008.12.008.
31. Strauss HW, Bailey D. Resurrection of thallium‑ 201 for myocardial perfusion imaging. JACC Cardiovasc Imaging 2009; 2(3): 283– 285. doi: 10.1016/ j.jcmg.2009.01.002.
32. Damle NA, Bal C, Bandopadhyaya GP et al. The role of 1899mTc‑ MDP bone scan. Jpn J Radiol 2013; 31(4): 262– 269. doi: 10.1007/ s11604- 013- 0179- 7.
33. Iagaru A, Mittra E, Dick DW et al. Prospective evaluation of (99m)Tc MDP scintigraphy, (18)F NaF PET/ CT, and (18
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2014 Číslo Supplementum
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Najčítanejšie v tomto čísle
- Protein Expression and Purification
- Methods for Studying Tumor Cell Migration and Invasiveness
- Next Generation Sequencing – Application in Clinical Practice
- Analysis of Protein Using Mass Spectrometry