Current Trends in Using PET Radiopharmaceuticals for Diagnostics in Oncology
Authors:
J. Adam 1,2; J. Kadeřávek 2; F. Kužel 2; J. Vašina 3; Z. Řehák 1,3
Authors place of work:
Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno
1; ÚJV Řež, a. s., Husinec‑ Řež
2; Oddělení nukleární medicíny, Masarykův onkologický ústav, Brno
3
Published in the journal:
Klin Onkol 2014; 27(Supplementum): 129-136
Summary
Nuclear medicine is an important field of modern medicine, particularly thanks to its role in in vivo imaging of important processes in human organism. This is possible thanks to the use of radiopharmaceuticals, specific substances labeled by radioactive nuclide, its distribution in the body can be visualized by specialized scanners and, based on the knowledge of physiological patterns, diagnosis can be determined. Positron emission tomography (PET) is a modern and in many ways indispensable method of nuclear medicine. The spectrum of radiopharmaceuticals available in recent years is broadening thanks to a coordinated effort of manufacturers of synthesis equipment, chemists and potential users – physicians. This review focuses on the development in the PET radiopharmaceutical field in the last five years, with an emphasis on oncological applications of PET.
Key words:
nuclear medicine – positron-emission tomography – radiopharmaceuticals – gallium-68 – carbon-11 – fluorine-18 – zirconium-89
This work was supported by the European Regional Development Fund and the State Budget of the Czech Republic (RECAMO, CZ.1.05/2.1.00/03.0101) and by MH CZ – DRO (MMCI, 00209805).
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Submitted:
3. 2. 2014
Accepted:
3. 4. 2014
Zdroje
1. Gallagher BM, Ansari A, Atkins H et al. Radiopharmaceuticals XXVII. 18F‑ labeled 2- deoxy‑ 2- fluoro‑D‑ glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals. J Nucl Med 1977; 18(10): 990−996.
2. Schirrmeister H, Kühn T, Guhlmann A et al. Fluorine‑ 18 2- deoxy‑ 2- fluoro‑D‑ glucose PET in the preoperative staging of breast cancer: Comparison with the standard staging procedures. Eur J Nucl Med 2001; 28(3): 351– 358.
3. Votrubova J, Belohlavek O, Jaruskova M et al. The role of FDG‑ PET/ CT in the detection of recurrent colorectal cancer. Eur J Nucl Med Mol Imaging 2006; 33(7): 779– 784.
4. Chessin DB, Kiran RP, Akhurst T et al. The emerging role of 18F‑ fluorodeoxyglucose positron emission tomography in the management of primary and recurrent rectal cancer. J Am Coll Surg 2005; 201(6): 948– 956.
5. Adam J, Andres P, Bolčák K et al. Nová radiofarmaka a aplikace pozitronové emisní tomografie na Masarykově onkologickém ústavu v Brně. Klin Onkol 2009; 22(3): 94– 97.
6. Ceci F, Castellucci P, Graziani T et al. 11C‑ Choline PET/ CT detects the site of relapse in the majority of prostate cancer patients showing biochemical recurrence after EBRT. Eur J Nucl Med Mol Imaging 2014; 41(5): 878−886. doi: 10.1007/ s00259- 013- 2655- 9.
7. Jereczek‑ Fossa BA, Rodari M, Bonora M et al. [11C]choline PET/ CT impacts treatment decision making in patients with prostate cancer referred for radiotherapy. Clin Genitourin Cancer 2013; doi: 10.1016/ j.clgc.2013.11.002.
8. Umbehr MH, Müntener M, Hany T et al. The role of 11C‑ choline and 18F‑ fluorocholine positron emission tomography (PET) and PET/ CT in prostate cancer: a systematic review and meta‑analysis. Eur Urol 2013; 64(1): 106−117. doi: 10.1016/ j.eururo.2013.04.019.
9. Roelcke U, Radü EW, von Ammon K et al. Alteration of blood‑ brain‑barrier in human brain‑tumors: comparison of [F‑ 18]fluorodeoxyglucose, [11C]methionine and Rb‑ 82 using PET. J Neurol Sci 1995; 132(1): 20−27.
10. Hatakeyama T, Kawai I, Nishiyama Y et al. C‑ 11- methionine (MET) and F‑ 18- fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging 2008; 35(11): 2009−2017. doi: 10.1007/ s00259- 008- 0847- 5.
11. Grassi I, Nanni C, Allegri V et al. The clinical use of PET with (11)C‑ acetate. Am J Nucl Med Mol Imaging 2012; 2(1): 33−47.
12. Larsson P, Arvidsson D, Björnstedt M et al. Adding 11C‑ acetate to 18F‑ FDG at PET examination has an incremental value in the diagnosis of hepatocellular carcinoma. Mol Imaging Radionucl Ther 2012; 21(1): 6−12. doi: 10.4274/ Mirt.87.
13. Mohsen B, Giorgio T, Rasoul ZS et al. Application of (11) C‑ acetate positron‑ emission tomography (PET) imaging in prostate cancer: systematic review and meta‑analysis of the literature. BJU Int 2013; 112(8): 1062−1072. doi: 10.1111/ bju.12279.
14. Orevi M, Klein M, Mishani E et al. 11C‑ acetate PET/ CT in bladder urothelial carcinoma: intraindividual comparison with 11C‑ choline. Clin Nucl Med 2012; 37(4): e67−e72. doi: 10.1097/ RLU.0b013e31824786e7.
15. Berti V, Pupi A, Mosconi L. PET/ CT in diagnosis of dementia. Ann N Y Acad Sci 2011; 1228: 81−92. doi: 10.1111// j.1749- 6632.2011.06015.x.
16. Rabinovici GD, Furst AJ, O‘Neil JP et al. 11C‑ PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology 2007; 68(15): 1205−1212.
17. Been LB, Suurmeijer AJ, Cobben DC et al. [18F]FLT‑ PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging 2004; 31(12): 1659−1672.
18. Shields AF, Grierson JR, Dohmen BM et al. Imaging proliferation in vivo with [F‑ 18]FLT and positron emission tomography. Nat Med 1998; 4(11): 1334−1336.
19. Rasey JS, Grierson JR, Wiens LW et al. Uptake of labeled FLT correlates with thymidine kinase (TK1) activity in human tumor cells. J Nucl Med 2000; 41: 36−37.
20. Buck AK, Halter G, Schirrmeister H et al. Imaging proliferation in lung tumors with PET: F‑ 18- FLT versus F‑ 18- FDG. J Nucl Med 2003; 44: 1426−1431.
21. Vesselle H, Grierson J, Muzi M et al. In vivo validation of 3‘ deoxy‑ 3‘- [F‑ 18]fluorothymidine ([F‑ 18]FLT) as a proliferation imaging tracer in humans: correlation of [F‑ 18]FLT uptake by positron emission tomography with Ki‑ 67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res 2002; 8(11): 3315−3323.
22. Shields AF, Lawhorn‑ Crews JM, Briston DA et al. Analysis and reproducibility of 3‘- deoxy‑ 3‘- [F‑ 18]fluorothymidine positron emission tomography imaging in patients with non‑small cell lung cancer. Clin Cancer Res 2008; 14(14): 4463−4468. doi: 10.1158/ 1078- 0432.CCR‑ 07-- 5243.
23. Yap CS, Vranjesevic D, Schiepers C et al. A comparison between [F‑ 18]fluorodeoxyglucose (FDG) and [F‑ 18] 3‘- deoxy‑ 3‘- fluorothymidine (FLT) uptake in solitary pulmonary nodules and lung cancer. J Nucl Med 2003; 44 (Suppl): 123.
24. Buck AK, Pitterle K, Schirrmeister H et al. [18F]FLT positron emission tomography for imaging Non‑ Hodgkin‘s lymphoma and assessment of proliferative activity. J Nucl Med 2003; 44(2): 188−189.
25. Direcks WG, Berndsen SC, Proost N et al. [F‑ 18]FDG and [F‑ 18]FLT uptake in human breast cancer cells in relation to the effects of chemotherapy: an in vitro study. Br J Cancer 2008; 99(3): 481−487. doi: 10.1038/ sj.bjc.6604523.
26. Linecker A, Kermer C, Sulzbacher I et al. Uptake of F‑ 18- FLT and F‑ 18- FDG in primary head and neck cancer correlates with survival. Nuklearmedizin 2008; 47(2): 80−85.
27. Cobben DC, van der Laan BF, Hoekstra HJ et al. Detection of mammary, laryngeal and soft tissue tumors with FLT‑ PET. J Nucl Med 2002; 43 (Suppl): 278.
28. Francis DL, Visvikis D, Costa DC et al. Potential impact of [F‑ 18]3‘- deoxy‑ 3‘- fluorothymidine versus [F‑ 18]fluoro‑2- deoxy‑ glucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 2003; 30(7): 988−994.
29. Schirrmeister H, Guhlmann A, Elsner K et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 1999; 40(40): 1623−1629.
30. Schirrmeister H, Guhlmann A, Kotzerke J et al. Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol 1999; 17(8): 2381−2389.
31. Petrén‑ Mallmin M, Andréasson I, Ljunggren O et al.Skeletal metastases from breast cancer: uptake of 18F‑ fluoride measured with PET in correlation with CT. Skeletal Radiol 1998; 27(2): 72– 76.
32. Grant FD, Fahey FH, Packard AB et al. Skeletal PET with 18F‑ fluoride: applying new technology to an old tracer. J Nucl Med 2008; 49(1): 68– 78.
33. Hetzel M, Arslandemir C, König HH et al. F‑ 18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost‑effectiveness, and impact on patient management. J Bone Miner Res 2003; 18(12): 2206– 2214.
34. Even‑ Sapir E, Metser U, Flusser G et al. Assessment of malignant skeletal disease: initial experience with 18F‑ fluoride PET/ CT and comparison between 18F‑ fluoride PET and 18F‑ fluoride PET/ CT. J Nucl Med 2004; 45(2): 272– 278.
35. Even‑ Sapir E, Metser U, Mishani E et al. The detection of bone metastase in patients with high‑risk prostate cancer: 99mTc‑ MDP Planar bone scintigraphy, single‑ and multi‑field‑ of‑ view SPECT, 18F‑ fluoride PET and 18F‑ fluoride PET/ CT. J Nucl Med 2006; 47(2): 287– 297.
36. Bauman G, Belhocine T, Kovacs M et al. 18F‑ fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis 2012; 15(1): 45– 55.
37. Soyka JD, Muster MA, Schmid DT et al. Clinical impact of 18F‑ choline PET/ CT in patients with recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2012; 39(6): 936– 943. doi: 10.1007/ s00259-012- 2083- 2.
38. Kwee SA, Coel MN, Lim J. Detection of recurrent prostate cancer with 18F‑ fluorocholine PET/ CT in relation to PSA level at the time of imaging. Ann Nucl Med 2012; 26(6): 501– 507. doi: 10.1007/ s12149- 012- 0601- 8.
39. Fabbri C, Galassi R, Moretti A et al. Radiation dosimetry of 18F‑ flurocholine PET/ CT studies in prostate cancer patients. Phys Med 2014; 30(3): 346– 351. doi: 10.1016/ j.ejmp.2013.10.007.
40. Quak E, Lheureux S, Reznik Y et al. F18- choline, a novel PET tracer for parathyroid adenoma? J Clin Endocrinol Metab 2013; 98(8): 3111– 3112. doi: 10.1210/ jc.2013- 2084.
41. Bieze M, Klümpen HJ, Verheij J et al. Diagnostic accuracy of 18F‑ methyl‑ choline PET/ CT for intra‑ and extrahepatic hepatocellular carcinoma. Hepatology 2014; 59(3): 996– 1006. doi: 10.1002/ hep.26781.
42. Cheng J, Lei L, Xu J et al. 18F‑ fluoromisonidazole PET/ CT: a potential tool for predicting primary endocrine therapy resistance in breast cancer. J Nucl Med 2013; 54(3): 333– 340. doi: 10.2967/ jnumed.112.111963.
43. Okamoto S, Shiga T, Yasuda K et al. High reproducibility of tumor hypoxia evaluated by 18F‑ fluoromisonidazole PET for head and neck cancer. J Nucl Med 2013; 54(2): 201– 207. doi: 10.2967/ jnumed.112.109330.
44. Henriques de Figueiredo B, Merlin T, de Clermont‑ Gallerande H et al. Potential of [18F]- fluoromisonidazole positron‑ emission tomography for radiotherapy planning in head and neck squamous cell carcinomas. Strahlenther Onkol 2013; 189(12): 1015– 1019. doi: 10.1007/ s00066- 013- 0454-7.
45. Kobayashi H, Hirata K, Yamaguchi S et al. Usefulness of FMISO‑ PET for Glioma Analysis. Neurol Med Chir (Tokyo) 2013; 53(11): 773– 778.
46. Götz I, Grosu AL. [(18)F]FET‑ PET imaging for treatment and response monitoring of radiation therapy in malignant glioma patients – a review. Front Oncol 2013; 3: 104. doi: 10.3389/ fonc.2013.00104.
47. Crippa F, Alessi A, Serafini GL. PET with radiolabeled aminoacid. Q J Nucl Med Mol Imaging 2012; 56(2): 151– 162.
48. Nataf V, Kerrou K, Balogova S et al. Fluoroethylthyrosine 18F PET in the detection of brain tumours. Bull Cancer 2010; 97(5): 495– 506. doi: 10.1684/ bdc.2010.1078.
49. Schuster DM, Taleghani PA, Nieh PT et al. Characterization of primary prostate carcinoma by anti‑1- amino‑ 2- [(18)F]- fluorocyclobutane‑ 1- carboxylic acid (anti‑3- [(18)F] FACBC) uptake. Am J Nucl Med Mol Imaging 2013; 3(1): 85– 96.
50. Schiavina R, Brunocilla E, Martorana G. The new promise of FACBC position emission tomography/ computed tomography in the localization of disease relapse after radical treatment for prostate cancer: are we turning to the right radiotracer? Eur Urol 2014; 65(1): 255– 256. doi: 10.1016/ j.eururo.2013.08.053.
51. Ono M, Oka S, Okudaira H et al. Comparative evaluation of transport mechanisms of trans‑1- amino‑ 3- [18F]fluorocyclobutanecarboxylic acid and L‑ [methyl‑ ¹¹C]methionine in human glioma cell lines. Brain Res 2013; 1535: 24– 37. doi: 10.1016/ j.brainres.2013.08.037.
52. Imperiale A, Rust E, Gabriel S et al. 18F‑ fluorodihydroxyphenylalanine PET/ CT in patients with neuroendocrine tumors of unknown origin: relation to tumor origin and differentiation. J Nucl Med 2014; 55(3): 367– 372. doi: 10.2967/ jnumed.113.126896.
53. Breeman WA, De Jong M, De Blois E et al. Radiolabelling DOTA‑ peptides with 68Ga. Eur J Nucl Med Mol Imaging 2005; 32(4): 478– 485.
54. von Falck C, Boerner AR, Galanski M et al. Neuroendocrine tumour of the mediastinum: fusion of 18F‑ FDG and 68Ga‑ DOTATOC PET/ CT data sets demonstrates different degrees of differentiation. Eur J Med Mol Imaging 2007; 34(5): 812.
55. Maeke HR, Hofman M, Haberkorn U. 68Ga‑ labeled peptides in tumor imaging. Nucl Med 2005; 46 (S1): 172S‑ 178S.
56. Sadeghi M, Kakavand T, Rajabifar S et al. Cyclotron production of 68Ga via proton‑induced reaction on 68Zn target. Nukleonika 2009; 54(1): 25– 28.
57. Meyer GJ, Maecke H, Schuhmacher J et al. 68Ga‑ labelled DOTA‑ derivatised peptide ligands. Eur J Nucl Med Mol Imaging 2004; 31(8): 1097– 1104.
58. Ocak M, Antretter M, Knopp R et al. Full automation of 68Ga labelling of DOTA‑ peptides including cation exchange prepurification. Appl Radiat Isot 2010; 68(2): 297– 302. doi: 10.1016/ j.apradiso.2009.10.006.
59. Roesch F, Riss PJ. The renaissance of the 68Ge/ 68Ga radionuclide generator initiates new developments in 68Ga radiopharmaceutical chemistry. Curr Top Med Chem 2010; 10(16): 1633– 1668.
60. Zhernosekov KP, Filosofov DV, Baum RP et al. Processing of generator‑ produced Ga‑ 68 for medical application. J Nucl Med 2007; 48(10): 1741– 1748.
61. Afshar‑ Oromieh A, Haberkorn U, Hadaschik B et al. PET/ MRI with a 68Ga‑ PSMA ligand for the detection of prostate cancer. Eur J Nucl Med Mol Imaging 2013; 40(10): 1629– 1630. doi: 10.1007/ s00259- 013- 2489- 5.
62. Buchmann I, Henze M, Engelbrecht S et al. Comparison of 68Ga‑ DOTATOC PET and 111In‑ DTPAOC (octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2007; 34(10): 1617– 1626.
63. Di Pierro D, Rizzello A, Cicoria G et al. Radiolabelling, quality control and radiochemical purity assessment of the octreotide analogue 68Ga DOTA NOC. Appl Radiat Isot 2008; 66(8): 1091– 1096. doi: 10.1016/ j.apradiso.2007.12.001.
64. Decristoforo C, Knopp R, Von Guggenberg E et al.A fully automated synthesis for the preparation of 68Ga‑ labelled peptides. Nucl Med Commun 2007; 28(11): 870– 875.
65. Kowalski J, Henze M, Schuhmacher J et al. Evaluation of positron emission tomography imaging using [68Ga]- DOTA‑ D‑ Phe1- Tyr3- octreotide in comparison to [111In]- DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol Imaging Biol 2003; 5(1): 42– 48.
66. Boschi S, Malizia C, Lodi F. Overview and perspectives on automation strategies in (68)Ga radiopharmaceutical preparations. Recent Results Cancer Res 2013; 194: 17– 31. doi: 10.1007/ 978- 3- 642- 27994- 2_2.
67. Schreiter NF, Brenner W, Nogami M et al. Cost comparison of 111In‑ DTPA‑ octreotide scintigraphy and 68Ga‑ DOTATOC PET/ CT for staging enteropancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2012; 39(1): 72– 82. doi: 10.1007/ s00259-011- 1935- 5.
68. Afshar‑ Oromieh A, Malcher A, Eder M et al. PET imaging with a [68Ga]gallium‑ labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging 2013; 40(4): 486– 495. doi: 10.1007/ s00259- 012- 2298- 2.
69. Afshar‑ Oromieh A, Haberkorn U, Eder M et al. [68Ga]Gallium‑ labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F‑ FECH. Eur J Nucl Med Mol Imaging 2012; 39(6): 1085– 1086. doi: 10.1007/ s00259- 012-- 2069- 0.
70. Varshney R, Hazari PP, Fernandez P et al. (68)Ga‑ labeled bombesin analogs for receptor‑ mediated imaging. Recent Results Cancer Res 2013; 194: 221– 256. doi: 10.1007/ 978- 3- 642- 27994-2_12.
71. Dejesus OT, Nickles RJ. Production and purification of 89Zr, a potential PET antibody label. Int J Radiat Appl Instrum [A] 1990; 41: 789– 790.
72. Zweit J, Downey S, Sharma HL. Production of no‑ carrier‑ added zirconium‑ 89 for positron emission tomography. Int J Radiat Appl Instrum [A] 1991; 42: 199– 201.
73. Tinianow JN, Gill HS, Ogasawara A et al. Site‑ specifically 89Zr‑ labeled monoclonal antibodies for ImmunoPET. Nucl Med Biol 2010; 37(3): 289– 297. doi: 10.1016/ j.nucmedbio.2009.11.010.
74. Perk LR, Visser GW, Vosjan MJ et al. 89Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals 90Y and 177Lu in tumor‑ bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med 2005; 46(11): 1898– 1906.
75. Vugts DJ, Visser GW, van Dongen GA. 89Zr‑ PET radiochemistry in the development and application of therapeutic monoclonal antibodies and other biologicals. Curr Top Med Chem 2013; 13(4): 446– 457.
76. Dijkers EC, Oude Munnink TH, Kosterink JG et al. Biodistribution of 89Zr‑ trastuzumab and PET imaging of HER2- positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther 2010; 87(5): 586– 592. doi: 10.1038/ clpt.2010.12.
77. Gaykema SB, Brouwers AH, Hovenga S et al. Zirconium‑ 89- trastuzumab positron emission tomography as a tool to solve a clinical dilemma in a patient with breast cancer. J Clin Oncol 2012; 30(6): e74– e75. doi: 10.1200/ JCO.2011.38.0204.
78. Nagengast WB, de Korte MA, Oude Munnink TH et al. 89Zr‑ bevacizumab PET of early antiangiogenic tumor response to treatment with HSP90 inhibitor NVP‑ AUY922. J Nucl Med 2010; 51(5): 761– 767. doi: 10.2967/ jnumed.109.071043.
79. Hoeben BA, Kaanders JH, Franssen GM et al. PET of hypoxia with 89Zr‑ labeled cG250- F(ab’)2 in head and neck tumors. J Nucl Med 2010; 51(7): 1076– 1083. doi: 10.2967/ jnumed.109.073189.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2014 Číslo Supplementum
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Najčítanejšie v tomto čísle
- Protein Expression and Purification
- Methods for Studying Tumor Cell Migration and Invasiveness
- Next Generation Sequencing – Application in Clinical Practice
- Analysis of Protein Using Mass Spectrometry