#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Single Enhancer Regulating the Differential Expression of Duplicated Red-Sensitive Opsin Genes in Zebrafish


A fundamental step in the evolution of the visual system is the gene duplication of visual opsins and differentiation between the duplicates in absorption spectra and expression pattern in the retina. However, our understanding of the mechanism of expression differentiation is far behind that of spectral tuning of opsins. Zebrafish (Danio rerio) have two red-sensitive cone opsin genes, LWS-1 and LWS-2. These genes are arrayed in a tail-to-head manner, in this order, and are both expressed in the long member of double cones (LDCs) in the retina. Expression of the longer-wave sensitive LWS-1 occurs later in development and is thus confined to the peripheral, especially ventral-nasal region of the adult retina, whereas expression of LWS-2 occurs earlier and is confined to the central region of the adult retina, shifted slightly to the dorsal-temporal region. In this study, we employed a transgenic reporter assay using fluorescent proteins and P1-artificial chromosome (PAC) clones encompassing the two genes and identified a 0.6-kb “LWS-activating region” (LAR) upstream of LWS-1, which regulates expression of both genes. Under the 2.6-kb flanking upstream region containing the LAR, the expression pattern of LWS-1 was recapitulated by the fluorescent reporter. On the other hand, when LAR was directly conjugated to the LWS-2 upstream region, the reporter was expressed in the LDCs but also across the entire outer nuclear layer. Deletion of LAR from the PAC clones drastically lowered the reporter expression of the two genes. These results suggest that LAR regulates both LWS-1 and LWS-2 by enhancing their expression and that interaction of LAR with the promoters is competitive between the two genes in a developmentally restricted manner. Sharing a regulatory region between duplicated genes could be a general way to facilitate the expression differentiation in duplicated visual opsins.


Vyšlo v časopise: A Single Enhancer Regulating the Differential Expression of Duplicated Red-Sensitive Opsin Genes in Zebrafish. PLoS Genet 6(12): e32767. doi:10.1371/journal.pgen.1001245
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001245

Souhrn

A fundamental step in the evolution of the visual system is the gene duplication of visual opsins and differentiation between the duplicates in absorption spectra and expression pattern in the retina. However, our understanding of the mechanism of expression differentiation is far behind that of spectral tuning of opsins. Zebrafish (Danio rerio) have two red-sensitive cone opsin genes, LWS-1 and LWS-2. These genes are arrayed in a tail-to-head manner, in this order, and are both expressed in the long member of double cones (LDCs) in the retina. Expression of the longer-wave sensitive LWS-1 occurs later in development and is thus confined to the peripheral, especially ventral-nasal region of the adult retina, whereas expression of LWS-2 occurs earlier and is confined to the central region of the adult retina, shifted slightly to the dorsal-temporal region. In this study, we employed a transgenic reporter assay using fluorescent proteins and P1-artificial chromosome (PAC) clones encompassing the two genes and identified a 0.6-kb “LWS-activating region” (LAR) upstream of LWS-1, which regulates expression of both genes. Under the 2.6-kb flanking upstream region containing the LAR, the expression pattern of LWS-1 was recapitulated by the fluorescent reporter. On the other hand, when LAR was directly conjugated to the LWS-2 upstream region, the reporter was expressed in the LDCs but also across the entire outer nuclear layer. Deletion of LAR from the PAC clones drastically lowered the reporter expression of the two genes. These results suggest that LAR regulates both LWS-1 and LWS-2 by enhancing their expression and that interaction of LAR with the promoters is competitive between the two genes in a developmentally restricted manner. Sharing a regulatory region between duplicated genes could be a general way to facilitate the expression differentiation in duplicated visual opsins.


Zdroje

1. OhnoS

1970

Evolution by Gene Duplication.

Berlin

Springer-Verlag

2. ZhangJ

2003

Evolution by gene duplication: an update.

Trends Ecol Evol

18

292

298

3. ForceA

LynchM

PickettFB

AmoresA

YanYL

1999

Preservation of duplicate genes by complementary, degenerative mutations.

Genetics

151

1531

1545

4. WagnerA

2000

Decoupled evolution of coding region and mRNA expression patterns after gene duplication: implications for the neutralist-selectionist debate.

Proc Natl Acad Sci USA

97

6579

6584

5. GuZ

NicolaeD

LuHH

LiWH

2002

Rapid divergence in expression between duplicate genes inferred from microarray data.

Trends Genet

18

609

613

6. NathansJ

1987

Molecular biology of visual pigments.

Annu Rev Neurosci

10

163

194

7. YokoyamaS

2000

Molecular evolution of vertebrate visual pigments.

Prog Retin Eye Res

19

385

419

8. YokoyamaR

YokoyamaS

1993

Molecular characterization of a blue visual pigment gene in the fish Astyanax fasciatus.

FEBS Lett

334

27

31

9. KawamuraS

BlowNS

YokoyamaS

1999

Genetic analyses of visual pigments of the pigeon (Columba livia).

Genetics

153

1839

1850

10. DaviesWL

CarvalhoLS

CowingJA

BeazleyLD

HuntDM

2007

Visual pigments of the platypus: a novel route to mammalian colour vision.

Curr Biol

17

R161

163

11. NordstromK

LarssonTA

LarhammarD

2004

Extensive duplications of phototransduction genes in early vertebrate evolution correlate with block (chromosome) duplications.

Genomics

83

852

872

12. WakefieldMJ

AndersonM

ChangE

WeiKJ

KaulR

2008

Cone visual pigments of monotremes: filling the phylogenetic gap.

Vis Neurosci

25

257

264

13. DaviesWL

CollinSP

HuntDM

2009

Adaptive gene loss reflects differences in the visual ecology of basal vertebrates.

Mol Biol Evol

26

1803

1809

14. YokoyamaS

StarmerWT

TakahashiY

TadaT

2006

Tertiary structure and spectral tuning of UV and violet pigments in vertebrates.

Gene

365

95

103

15. HuntDM

CarvalhoLS

CowingJA

ParryJW

WilkieSE

2007

Spectral tuning of shortwave-sensitive visual pigments in vertebrates.

Photochem Photobiol

83

303

310

16. AltunA

YokoyamaS

MorokumaK

2008

Quantum mechanical/molecular mechanical studies on spectral tuning mechanisms of visual pigments and other photoactive proteins.

Photochem Photobiol

84

845

854

17. YokoyamaS

TadaT

ZhangH

BrittL

2008

Elucidation of phenotypic adaptations: Molecular analyses of dim-light vision proteins in vertebrates.

Proc Natl Acad Sci USA

105

13480

13485

18. YokoyamaS

YangH

StarmerWT

2008

Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates.

Genetics

179

2037

2043

19. TreziseAE

CollinSP

2005

Opsins: evolution in waiting.

Curr Biol

15

R794

796

20. BowmakerJK

2008

Evolution of vertebrate visual pigments.

Vision Res

48

2022

2041

21. HofmannCM

CarletonKL

2009

Gene duplication and differential gene expression play an important role in the diversification of visual pigments in fish.

Integr Comp Biol

49

630

643

22. LevineJS

MacNicholEFJr

1982

Color vision in fishes.

Sci Am

246

140

149

23. La VailMM

RapaportDH

RakicP

1991

Cytogenesis in the monkey retina.

J Comp Neurol

309

86

114

24. MoshiriA

CloseJ

RehTA

2004

Retinal stem cells and regeneration.

Int J Dev Biol

48

1003

1014

25. ChinenA

HamaokaT

YamadaY

KawamuraS

2003

Gene duplication and spectral diversification of cone visual pigments of zebrafish.

Genetics

163

663

675

26. MatsumotoY

FukamachiS

MitaniH

KawamuraS

2006

Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes).

Gene

371

268

278

27. TeraiY

MayerWE

KleinJ

TichyH

OkadaN

2002

The effect of selection on a long wavelength-sensitive (LWS) opsin gene of Lake Victoria cichlid fishes.

Proc Natl Acad Sci USA

99

15501

15506

28. ParryJW

CarletonKL

SpadyT

CarbooA

HuntDM

2005

Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids.

Curr Biol

15

1734

1739

29. TeraiY

SeehausenO

SasakiT

TakahashiK

MizoiriS

2006

Divergent selection on opsins drives incipient speciation in Lake Victoria cichlids.

PLoS Biol

4

2244

2251

30. SeehausenO

TeraiY

MagalhaesIS

CarletonKL

MrossoHD

2008

Speciation through sensory drive in cichlid fish.

Nature

455

620

626

31. RaymondPA

BarthelLK

RounsiferME

SullivanSA

KnightJK

1993

Expression of rod and cone visual pigments in goldfish and zebrafish: a rhodopsin-like gene is expressed in cones.

Neuron

10

1161

1174

32. VihtelicTS

DoroCJ

HydeDR

1999

Cloning and characterization of six zebrafish photoreceptor opsin cDNAs and immunolocalization of their corresponding proteins.

Vis Neurosci

16

571

585

33. TakechiM

KawamuraS

2005

Temporal and spatial changes in the expression pattern of multiple red and green subtype opsin genes during zebrafish development.

J Exp Biol

208

1337

1345

34. KennedyBN

VihtelicTS

CheckleyL

VaughanKT

HydeDR

2001

Isolation of a zebrafish rod opsin promoter to generate a transgenic zebrafish line expressing enhanced green fluorescent protein in rod photoreceptors.

J Biol Chem

276

14037

14043

35. HamaokaT

TakechiM

ChinenA

NishiwakiY

KawamuraS

2002

Visualization of rod photoreceptor development using GFP-transgenic zebrafish.

Genesis

34

215

220

36. AsaokaY

ManoH

KojimaD

FukadaY

2002

Pineal expression-promoting element (PIPE), a cis-acting element, directs pineal-specific gene expression in zebrafish.

Proc Natl Acad Sci USA

99

15456

15461

37. KawamuraS

TakeshitaK

TsujimuraT

KasagiS

MatsumotoY

2005

Evolutionarily conserved and divergent regulatory sequences in the fish rod opsin promoter.

Comp Biochem Physiol B

141

391

399

38. TakechiM

HamaokaT

KawamuraS

2003

Fluorescence visualization of ultraviolet-sensitive cone photoreceptor development in living zebrafish.

FEBS Lett

553

90

94

39. LuoW

WilliamsJ

SmallwoodPM

TouchmanJW

RomanLM

2004

Proximal and distal sequences control UV cone pigment gene expression in transgenic zebrafish.

J Biol Chem

279

19286

19293

40. TakechiM

SenoS

KawamuraS

2008

Identification of cis-acting elements repressing blue opsin expression in zebrafish UV cones and pineal cells.

J Biol Chem

283

31625

31632

41. TsujimuraT

ChinenA

KawamuraS

2007

Identification of a locus control region for quadruplicated green-sensitive opsin genes in zebrafish.

Proc Natl Acad Sci USA

104

12813

12818

42. MullerF

WilliamsDW

KobolakJ

GauvryL

GoldspinkG

1997

Activator effect of coinjected enhancers on the muscle-specific expression of promoters in zebrafish embryos.

Mol Reprod Dev

47

404

412

43. GongZ

JuB

WangX

HeJ

WanH

2002

Green fluorescent protein expression in germ-line transmitted transgenic zebrafish under a stratified epithelial promoter from keratin8.

Dev Dyn

223

204

215

44. ParinovS

KondrichinI

KorzhV

EmelyanovA

2004

Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo.

Dev Dyn

231

449

459

45. NathansJ

DavenportCM

MaumeneeIH

LewisRA

HejtmancikJF

1989

Molecular genetics of human blue cone monochromacy.

Science

245

831

838

46. WangY

MackeJP

MerbsSL

ZackDJ

KlaunbergB

1992

A locus control region adjacent to the human red and green visual pigment genes.

Neuron

9

429

440

47. ChenS

WangQL

NieZ

SunH

LennonG

1997

Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes.

Neuron

19

1017

1030

48. FurukawaT

MorrowEM

CepkoCL

1997

Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation.

Cell

91

531

541

49. FreundCL

Gregory-EvansCY

FurukawaT

PapaioannouM

LooserJ

1997

Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor.

Cell

91

543

553

50. LiX

ChenS

WangQ

ZackDJ

SnyderSH

1998

A pineal regulatory element (PIRE) mediates transactivation by the pineal/retina-specific transcription factor CRX.

Proc Natl Acad Sci USA

95

1876

1881

51. GamseJT

ShenYC

ThisseC

ThisseB

RaymondPA

2002

Otx5 regulates genes that show circadian expression in the zebrafish pineal complex.

Nat Genet

30

117

121

52. WinderickxJ

BattistiL

MotulskyAG

DeebSS

1992

Selective expression of human X chromosome-linked green opsin genes.

Proc Natl Acad Sci USA

89

9710

9714

53. HayashiT

MotulskyAG

DeebSS

1999

Position of a ‘green-red’ hybrid gene in the visual pigment array determines colour-vision phenotype.

Nat Genet

22

90

93

54. WangY

SmallwoodPM

CowanM

BleshD

LawlerA

1999

Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors.

Proc Natl Acad Sci USA

96

5251

5256

55. SmallwoodPM

WangY

NathansJ

2002

Role of a locus control region in the mutually exclusive expression of human red and green cone pigment genes.

Proc Natl Acad Sci USA

99

1008

1011

56. LevineJS

MacNicholEFJr

1979

Visual pigments in teleost fishes: effects of habitat, microhabitat, and behavior on visual system evolution.

Sens Processes

3

95

131

57. ThermesV

GrabherC

RistoratoreF

BourratF

ChoulikaA

2002

I-SceI meganuclease mediates highly efficient transgenesis in fish.

Mech Dev

118

91

98

58. LeeEC

YuD

Martinez de VelascoJ

TessarolloL

SwingDA

2001

A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA.

Genomics

73

56

65

59. UrasakiA

MorvanG

KawakamiK

2006

Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition.

Genetics

174

639

649

60. KawakamiK

TakedaH

KawakamiN

KobayashiM

MatsudaN

2004

A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish.

Dev Cell

7

133

144

61. WesterfieldM

1995

The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio).

Eugene

University of Oregon Press

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#