Competitive Repair by Naturally Dispersed Repetitive DNA during Non-Allelic Homologous Recombination
Genome rearrangements often result from non-allelic homologous recombination (NAHR) between repetitive DNA elements dispersed throughout the genome. Here we systematically analyze NAHR between Ty retrotransposons using a genome-wide approach that exploits unique features of Saccharomyces cerevisiae purebred and Saccharomyces cerevisiae/Saccharomyces bayanus hybrid diploids. We find that DNA double-strand breaks (DSBs) induce NAHR–dependent rearrangements using Ty elements located 12 to 48 kilobases distal to the break site. This break-distal recombination (BDR) occurs frequently, even when allelic recombination can repair the break using the homolog. Robust BDR–dependent NAHR demonstrates that sequences very distal to DSBs can effectively compete with proximal sequences for repair of the break. In addition, our analysis of NAHR partner choice between Ty repeats shows that intrachromosomal Ty partners are preferred despite the abundance of potential interchromosomal Ty partners that share higher sequence identity. This competitive advantage of intrachromosomal Tys results from the relative efficiencies of different NAHR repair pathways. Finally, NAHR generates deleterious rearrangements more frequently when DSBs occur outside rather than within a Ty repeat. These findings yield insights into mechanisms of repeat-mediated genome rearrangements associated with evolution and cancer.
Vyšlo v časopise:
Competitive Repair by Naturally Dispersed Repetitive DNA during Non-Allelic Homologous Recombination. PLoS Genet 6(12): e32767. doi:10.1371/journal.pgen.1001228
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001228
Souhrn
Genome rearrangements often result from non-allelic homologous recombination (NAHR) between repetitive DNA elements dispersed throughout the genome. Here we systematically analyze NAHR between Ty retrotransposons using a genome-wide approach that exploits unique features of Saccharomyces cerevisiae purebred and Saccharomyces cerevisiae/Saccharomyces bayanus hybrid diploids. We find that DNA double-strand breaks (DSBs) induce NAHR–dependent rearrangements using Ty elements located 12 to 48 kilobases distal to the break site. This break-distal recombination (BDR) occurs frequently, even when allelic recombination can repair the break using the homolog. Robust BDR–dependent NAHR demonstrates that sequences very distal to DSBs can effectively compete with proximal sequences for repair of the break. In addition, our analysis of NAHR partner choice between Ty repeats shows that intrachromosomal Ty partners are preferred despite the abundance of potential interchromosomal Ty partners that share higher sequence identity. This competitive advantage of intrachromosomal Tys results from the relative efficiencies of different NAHR repair pathways. Finally, NAHR generates deleterious rearrangements more frequently when DSBs occur outside rather than within a Ty repeat. These findings yield insights into mechanisms of repeat-mediated genome rearrangements associated with evolution and cancer.
Zdroje
1. StankiewiczP
LupskiJR
2010 Structural variation in the human genome and its role in disease. Annu Rev Med 61 437 455
2. KorbelJO
UrbanAE
AffourtitJP
GodwinB
GrubertF
2007 Paired-end mapping reveals extensive structural variation in the human genome. Science 318 420 426
3. KiddJM
CooperGM
DonahueWF
HaydenHS
SampasN
2008 Mapping and sequencing of structural variation from eight human genomes. Nature 453 56 64
4. HanK
LeeJ
MeyerTJ
RemediosP
GoodwinL
2008 L1 recombination-associated deletions generate human genomic variation. Proc Natl Acad Sci U S A 105 19366 19371
5. XingJ
ZhangY
HanK
SalemAH
SenSK
2009 Mobile elements create structural variation: analysis of a complete human genome. Genome Res 19 1516 1526
6. PaquesF
HaberJE
1999 Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63 349 404
7. SugawaraN
HaberJE
1992 Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol Cell Biol 12 563 575
8. RudinN
HaberJE
1988 Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol Cell Biol 8 3918 3928
9. RayA
MachinN
StahlFW
1989 A DNA double chain break stimulates triparental recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 86 6225 6229
10. InbarO
KupiecM
1999 Homology search and choice of homologous partner during mitotic recombination. Mol Cell Biol 19 4134 4142
11. DattaA
HendrixM
LipsitchM
Jinks-RobertsonS
1997 Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc Natl Acad Sci U S A 94 9757 9762
12. LarocqueJR
JasinM
2010 Mechanisms of recombination between diverged sequences in wild-type and BLM-deficient mouse and human cells. Mol Cell Biol
13. ShenP
HuangHV
1986 Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112 441 457
14. WaldmanAS
LiskayRM
1988 Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol Cell Biol 8 5350 5357
15. Jinks-RobertsonS
MichelitchM
RamcharanS
1993 Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae. Mol Cell Biol 13 3937 3950
16. RoederGS
SmithM
LambieEJ
1984 Intrachromosomal movement of genetically marked Saccharomyces cerevisiae transposons by gene conversion. Mol Cell Biol 4 703 711
17. LichtenM
HaberJE
1989 Position effects in ectopic and allelic mitotic recombination in Saccharomyces cerevisiae. Genetics 123 261 268
18. AgmonN
PurS
LiefshitzB
KupiecM
2009 Analysis of repair mechanism choice during homologous recombination. Nucleic Acids Res 37 5081 5092
19. BurgessSM
KlecknerN
1999 Collisions between yeast chromosomal loci in vivo are governed by three layers of organization. Genes Dev 13 1871 1883
20. SchlechtHB
LichtenM
GoldmanAS
2004 Compartmentalization of the yeast meiotic nucleus revealed by analysis of ectopic recombination. Genetics 168 1189 1203
21. MalkovaA
NaylorML
YamaguchiM
IraG
HaberJE
2005 RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion. Mol Cell Biol 25 933 944
22. WuX
WuC
HaberJE
1997 Rules of donor preference in saccharomyces mating-type gene switching revealed by a competition assay involving two types of recombination. Genetics 147 399 407
23. LiangF
HanM
RomanienkoPJ
JasinM
1998 Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A 95 5172 5177
24. NeuvegliseC
FeldmannH
BonE
GaillardinC
CasaregolaS
2002 Genomic evolution of the long terminal repeat retrotransposons in hemiascomycetous yeasts. Genome Res 12 930 943
25. LitiG
PeruffoA
JamesSA
RobertsIN
LouisEJ
2005 Inferences of evolutionary relationships from a population survey of LTR-retrotransposons and telomeric-associated sequences in the Saccharomyces sensu stricto complex. Yeast 22 177 192
26. LeeHY
ChouJY
CheongL
ChangNH
YangSY
2008 Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species. Cell 135 1065 1073
27. KellisM
PattersonN
EndrizziM
BirrenB
LanderES
2003 Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423 241 254
28. JainS
SugawaraN
LydeardJ
VazeM
Tanguy Le GacN
2009 A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair. Genes Dev 23 291 303
29. SpellRM
Jinks-RobertsonS
2004 Examination of the roles of Sgs1 and Srs2 helicases in the enforcement of recombination fidelity in Saccharomyces cerevisiae. Genetics 168 1855 1865
30. Fishman-LobellJ
RudinN
HaberJE
1992 Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol Cell Biol 12 1292 1303
31. SugawaraN
WangX
HaberJE
2003 In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol Cell 12 209 219
32. ArguesoJL
WestmorelandJ
MieczkowskiPA
GawelM
PetesTD
2008 Double-strand breaks associated with repetitive DNA can reshape the genome. Proc Natl Acad Sci U S A 105 11845 11850
33. ParketA
InbarO
KupiecM
1995 Recombination of Ty elements in yeast can be induced by a double-strand break. Genetics 140 67 77
34. VanHulleK
LemoineFJ
NarayananV
DowningB
HullK
2007 Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements. Mol Cell Biol 27 2601 2614
35. LeePS
PetesTD
2010 From the Cover: mitotic gene conversion events induced in G1-synchronized yeast cells by gamma rays are similar to spontaneous conversion events. Proc Natl Acad Sci U S A 107 7383 7388
36. ChungWH
ZhuZ
PapushaA
MalkovaA
IraG
2010 Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting. PLoS Genet 6 e1000948 doi:10.1371/journal.pgen.1000948
37. MarshallWF
StraightA
MarkoJF
SwedlowJ
DernburgA
1997 Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol 7 930 939
38. DuanZ
AndronescuM
SchutzK
McIlwainS
KimYJ
2010 A three-dimensional model of the yeast genome. Nature 465 363 367
39. KimJM
VanguriS
BoekeJD
GabrielA
VoytasDF
1998 Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8 464 478
40. ThompsonM
HaeuslerRA
GoodPD
EngelkeDR
2003 Nucleolar clustering of dispersed tRNA genes. Science 302 1399 1401
41. Johnson-SchlitzDM
FloresC
EngelsWR
2007 Multiple-pathway analysis of double-strand break repair mutations in Drosophila. PLoS Genet 3 e50 doi:10.1371/journal.pgen.0030050
42. ElliottB
RichardsonC
JasinM
2005 Chromosomal translocation mechanisms at intronic alu elements in mammalian cells. Mol Cell 17 885 894
43. TremblayA
JasinM
ChartrandP
2000 A double-strand break in a chromosomal LINE element can be repaired by gene conversion with various endogenous LINE elements in mouse cells. Mol Cell Biol 20 54 60
44. UmezuK
HiraokaM
MoriM
MakiH
2002 Structural analysis of aberrant chromosomes that occur spontaneously in diploid Saccharomyces cerevisiae: retrotransposon Ty1 plays a crucial role in chromosomal rearrangements. Genetics 160 97 110
45. GuthrieC
FinkGR
1991 Guide to Yeast Genetics and Molecular Biology. San Diego, California Academic Press, Inc.
46. BrachmannCB
DaviesA
CostGJ
CaputoE
LiJ
1998 Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14 115 132
47. MartinOC
DeSevoCG
GuoBZ
KoshlandDE
DunhamMJ
2009 Telomere behavior in a hybrid yeast. Cell Res 19 910 912
48. GietzRD
SchiestlRH
2007 High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2 31 34
49. LisbyM
MortensenUH
RothsteinR
2003 Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol 5 572 577
50. Fishman-LobellJ
HaberJE
1992 Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258 480 484
51. HaberJE
1992 Mating-type gene switching in Saccharomyces cerevisiae. Trends Genet 8 446 452
52. SchwartzDC
CantorCR
1984 Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37 67 75
53. DunhamMJ
BadraneH
FereaT
AdamsJ
BrownPO
2002 Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 99 16144 16149
54. WicksteedBL
CollinsI
DershowitzA
StatevaLI
GreenRP
1994 A physical comparison of chromosome III in six strains of Saccharomyces cerevisiae. Yeast 10 39 57
55. LemoineFJ
DegtyarevaNP
LobachevK
PetesTD
2005 Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites. Cell 120 587 598
56. ShibataY
MalhotraA
BekiranovS
DuttaA
2009 Yeast genome analysis identifies chromosomal translocation, gene conversion events and several sites of Ty element insertion. Nucleic Acids Res 37 6454 6465
57. GordonD
AbajianC
GreenP
1998 Consed: a graphical tool for sequence finishing. Genome Res 8 195 202
58. RiceP
LongdenI
BleasbyA
2000 EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16 276 277
59. AltschulSF
GishW
MillerW
MyersEW
LipmanDJ
1990 Basic local alignment search tool. J Mol Biol 215 403 410
60. StajichJE
BlockD
BoulezK
BrennerSE
ChervitzSA
2002 The Bioperl toolkit: Perl modules for the life sciences. Genome Res 12 1611 1618
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 12
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Functional Comparison of Innate Immune Signaling Pathways in Primates
- Expression of Linear and Novel Circular Forms of an -Associated Non-Coding RNA Correlates with Atherosclerosis Risk
- Genome-Wide Interrogation of Mammalian Stem Cell Fate Determinants by Nested Chromosome Deletions
- Histone H2A C-Terminus Regulates Chromatin Dynamics, Remodeling, and Histone H1 Binding