Cleavage of Phosphorothioated DNA and Methylated DNA by the Type IV Restriction Endonuclease ScoMcrA
Many taxonomically diverse prokaryotes enzymatically modify their DNA by replacing a non-bridging oxygen with a sulfur atom at specific sequences. The biological implications of this DNA S-modification (phosphorothioation) were unknown. We observed that simultaneous expression of the dndA-E gene cluster from Streptomyces lividans 66, which is responsible for the DNA S-modification, and the putative Streptomyces coelicolor A(3)2 Type IV methyl-dependent restriction endonuclease ScoA3McrA (Sco4631) leads to cell death in the same host. A His-tagged derivative of ScoA3McrA cleaved S-modified DNA and also Dcm-methylated DNA in vitro near the respective modification sites. Double-strand cleavage occurred 16–28 nucleotides away from the phosphorothioate links. DNase I footprinting demonstrated binding of ScoA3McrA to the Dcm methylation site, but no clear binding could be detected at the S-modified site under cleavage conditions. This is the first report of in vitro endonuclease activity of a McrA homologue and also the first demonstration of an enzyme that specifically cleaves S-modified DNA.
Vyšlo v časopise:
Cleavage of Phosphorothioated DNA and Methylated DNA by the Type IV Restriction Endonuclease ScoMcrA. PLoS Genet 6(12): e32767. doi:10.1371/journal.pgen.1001253
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001253
Souhrn
Many taxonomically diverse prokaryotes enzymatically modify their DNA by replacing a non-bridging oxygen with a sulfur atom at specific sequences. The biological implications of this DNA S-modification (phosphorothioation) were unknown. We observed that simultaneous expression of the dndA-E gene cluster from Streptomyces lividans 66, which is responsible for the DNA S-modification, and the putative Streptomyces coelicolor A(3)2 Type IV methyl-dependent restriction endonuclease ScoA3McrA (Sco4631) leads to cell death in the same host. A His-tagged derivative of ScoA3McrA cleaved S-modified DNA and also Dcm-methylated DNA in vitro near the respective modification sites. Double-strand cleavage occurred 16–28 nucleotides away from the phosphorothioate links. DNase I footprinting demonstrated binding of ScoA3McrA to the Dcm methylation site, but no clear binding could be detected at the S-modified site under cleavage conditions. This is the first report of in vitro endonuclease activity of a McrA homologue and also the first demonstration of an enzyme that specifically cleaves S-modified DNA.
Zdroje
1. RobertsonKD
2005 DNA Methylation and human disease. Nat Rev Genet 6 597 610
2. BickleTA
KrugerDH
1993 Biology of DNA restriction. Microbiol Rev 57 434 450
3. DrydenDT
MurrayNE
RaoDN
2001 Nucleoside triphosphate-dependent restriction enzymes. Nucleic Acids Res 29 3728 3741
4. RobertsRJ
VinczeT
PosfaiJ
MacelisD
2010 REBASE–a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 38 D234 236
5. BairCL
BlackLW
2007 A type IV modification dependent restriction nuclease that targets glucosylated hydroxymethyl cytosine modified DNAs. J Mol Biol 366 768 778
6. ZhouX
HeX
LiangJ
LiA
XuT
2005 A novel DNA modification by sulphur. Mol Microbiol 57 1428 1438
7. ZhouX
DengZ
FirminJL
HopwoodDA
KieserT
1988 Site-specific degradation of Streptomyces lividans DNA during electrophoresis in buffers contaminated with ferrous iron. Nucleic Acids Res 16 4341 4352
8. BentleySD
ChaterKF
Cerdeno-TarragaAM
ChallisGL
ThomsonNR
2002 Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417 141 147
9. Gonzalez-CeronG
Miranda-OlivaresOJ
Servin-GonzalezL
2009 Characterization of the methyl-specific restriction system of Streptomyces coelicolor A3(2) and of the role played by laterally acquired nucleases. FEMS Microbiol Lett 301 35 43
10. FlettF
MersiniasV
SmithCP
1997 High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155 223 229
11. KieserT
BibbMJ
ChaterKF
ButterMJ
HopwoodDA
2000 Practical Streptomyces genetics. a laboratory manual. Norwich John Innes Foundation, United Kingdom
12. JayapalKP
LianW
GlodF
ShermanDH
HuWS
2007 Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans. BMC Genomics 8 229
13. HeX
OuHY
YuQ
ZhouX
WuJ
2007 Analysis of a genomic island housing genes for DNA S-modification system in Streptomyces lividans 66 and its counterparts in other distantly related bacteria. Mol Microbiol 65 1034 1048
14. BibbMJ
WardJM
KieserT
CohenSN
HopwoodDA
1981 Excision of chromosomal DNA sequences from Streptomyces coelicolor forms a novel family of plasmids detectable in Streptomyces lividans. Mol Gen Genet 184 230 240
15. RaleighEA
WilsonG
1986 Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proc Natl Acad Sci U S A 83 9070 9074
16. MulliganEA
DunnJJ
2008 Cloning, purification and initial characterization of E. coli McrA, a putative 5-methylcytosine-specific nuclease. Protein Expr Purif 62 98 103
17. MulliganEA
HatchwellE
McCorkleSR
DunnJJ
2010 Differential binding of Escherichia coli McrA protein to DNA sequences that contain the dinucleotide m5CpG. Nucleic Acids Res 38 1997 2005
18. WangL
ChenS
XuT
TaghizadehK
WishnokJS
2007 Phosphorothioation of DNA in bacteria by dnd genes. Nat Chem Biol 3 709 710
19. RayT
MillsA
DysonP
1995 Tris-dependent oxidative DNA strand scission during electrophoresis. Electrophoresis 16 888 894
20. OuHY
HeX
ShaoY
TaiC
RajakumarK
2009 dndDB: a database focused on phosphorothioation of the DNA backbone. PLoS ONE 4 e5132 doi:10.1371/journal.pone.0005132
21. LiangJ
WangZ
HeX
LiJ
ZhouX
2007 DNA modification by sulfur: analysis of the sequence recognition specificity surrounding the modification sites. Nucleic Acids Res 35 2944 2954
22. SunY
HeX
LiangJ
ZhouX
DengZ
2009 Analysis of functions in plasmid pHZ1358 influencing its genetic and structural stability in Streptomyces lividans 1326. Appl Microbiol Biotechnol 82 303 310
23. EvansM
KaczmarekFS
Stutzman-EngwallK
DysonP
1994 Characterization of a Streptomyces-lividans-type site-specific DNA modification system in the avermectin-producer Streptomyces avermitilis permits investigation of two novel giant linear plasmids, pSA1 and pSA2. Microbiology 140 Pt 6 1367 1371
24. HsuM
BergP
1978 Altering the specificity of restriction endonuclease: effect of replacing Mg2+ with Mn2+. Biochemistry 17 131 138
25. ThielkingV
SelentU
KohlerE
LandgrafA
WolfesH
1992 Mg2+ confers DNA binding specificity to the EcoRV restriction endonuclease. Biochemistry 31 3727 3732
26. JanulaitisA
PetrusyteM
ManelieneZ
KlimasauskasS
ButkusV
1992 Purification and properties of the Eco57I restriction endonuclease and methylase–prototypes of a new class (type IV). Nucleic Acids Res 20 6043 6049
27. StewartFJ
RaleighEA
1998 Dependence of McrBC cleavage on distance between recognition elements. Biol Chem 379 611 616
28. Jurenaite-UrbanavicieneS
KazlauskieneR
UrbelyteV
ManelieneZ
PetrusyteM
2001 Characterization of BseMII, a new type IV restriction-modification system, which recognizes the pentanucleotide sequence 5′-CTCAG(N)(10/8). Nucleic Acids Res 29 895 903
29. StewartFJ
PanneD
BickleTA
RaleighEA
2000 Methyl-specific DNA binding by McrBC, a modification-dependent restriction enzyme. J Mol Biol 298 611 622
30. ChanSH
OpitzL
HigginsL
O'LoaneD
XuSY
2010 Cofactor requirement of HpyAV restriction endonuclease. PLoS ONE 5 e9071 doi:10.1371/journal.pone.0009071
31. ZhengY
Cohen-KarniD
XuD
ChinHG
WilsonG
2010 A unique family of Mrr-like modification-dependent restriction endonucleases. Nucleic Acids Res
32. RobertsRJ
BelfortM
BestorT
BhagwatAS
BickleTA
2003 A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31 1805 1812
33. DysonP
EvansM
1998 Novel post-replicative DNA modification in Streptomyces: analysis of the preferred modification site of plasmid pIJ101. Nucleic Acids Res 26 1248 1253
34. SutherlandE
CoeL
RaleighEA
1992 McrBC: a multisubunit GTP-dependent restriction endonuclease. J Mol Biol 225 327 348
35. RaleighEA
TrimarchiR
RevelH
1989 Genetic and physical mapping of the mcrA (rglA) and mcrB (rglB) loci of Escherichia coli K-12. Genetics 122 279 296
36. RaleighEA
BennerJ
BloomF
BraymerHD
DeCruzE
1991 Nomenclature relating to restriction of modified DNA in Escherichia coli. J Bacteriol 173 2707 2709
37. GorbalenyaAE
1994 Self-splicing group I and group II introns encode homologous (putative) DNA endonucleases of a new family. Protein Sci 3 1117 1120
38. DalgaardJZ
KlarAJ
MoserMJ
HolleyWR
ChatterjeeA
1997 Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the HNH family. Nucleic Acids Res 25 4626 4638
39. FukudaE
KaminskaKH
BujnickiJM
KobayashiI
2008 Cell death upon epigenetic genome methylation: a novel function of methyl-specific deoxyribonucleases. Genome Biol 9 R163
40. MacNeilDJ
1988 Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. J Bacteriol 170 5607 5612
41. ThompsonCJ
WardJM
HopwoodDA
1982 Cloning of antibiotic resistance and nutritional genes in streptomycetes. J Bacteriol 151 668 677
42. OmerCA
CohenSN
1984 Plasmid formation in Streptomyces: excision and integration of the SLP1 replicon at a specific chromosomal site. Mol Gen Genet 196 429 438
43. ThompsonCJ
KieserT
WardJM
HopwoodDA
1982 Physical analysis of antibiotic-resistance genes from Streptomyces and their use in vector construction. Gene 20 51 62
44. BahlMI
HansenLH
SorensenSJ
2009 Persistence mechanisms of conjugative plasmids. Methods Mol Biol 532 73 102
45. FurutaY
AbeK
KobayashiI
2010 Genome comparison and context analysis reveals putative mobile forms of restriction-modification systems and related rearrangements. Nucleic Acids Res 38 2428 2443
46. AsakuraY
KobayashiI
2009 From damaged genome to cell surface: transcriptome changes during bacterial cell death triggered by loss of a restriction-modification gene complex. Nucleic Acids Res 37 3021 3031
47. CollierJ
2009 Epigenetic regulation of the bacterial cell cycle. Curr Opin Microbiol 12 722 729
48. MarinusMG
CasadesusJ
2009 Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol Rev 33 488 503
49. ModrichP
1987 DNA mismatch correction. Annu Rev Biochem 56 435 466
50. LeeSC
OmerCA
BraschMA
CohenSN
1988 Analysis of recombination occurring at SLP1 att sites. J Bacteriol 170 5806 5813
51. XuT
YaoF
ZhouX
DengZ
YouD
2010 A novel host-specific restriction system associated with DNA backbone S-modification in Salmonella. Nucleic Acids Res
52. SambrookJ
FritschEF
ManiatisT
1989 Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor, N.Y Cold Spring Harbor Laboratory
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 12
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Functional Comparison of Innate Immune Signaling Pathways in Primates
- Expression of Linear and Novel Circular Forms of an -Associated Non-Coding RNA Correlates with Atherosclerosis Risk
- Genome-Wide Interrogation of Mammalian Stem Cell Fate Determinants by Nested Chromosome Deletions
- Histone H2A C-Terminus Regulates Chromatin Dynamics, Remodeling, and Histone H1 Binding