Ancestral Regulatory Circuits Governing Ectoderm Patterning Downstream of Nodal and BMP2/4 Revealed by Gene Regulatory Network Analysis in an Echinoderm
Echinoderms, which are phylogenetically related to vertebrates and produce large numbers of transparent embryos that can be experimentally manipulated, offer many advantages for the analysis of the gene regulatory networks (GRN) regulating germ layer formation. During development of the sea urchin embryo, the ectoderm is the source of signals that pattern all three germ layers along the dorsal-ventral axis. How this signaling center controls patterning and morphogenesis of the embryo is not understood. Here, we report a large-scale analysis of the GRN deployed in response to the activity of this signaling center in the embryos of the Mediterranean sea urchin Paracentrotus lividus, in which studies with high spatial resolution are possible. By using a combination of in situ hybridization screening, overexpression of mRNA, recombinant ligand treatments, and morpholino-based loss-of-function studies, we identified a cohort of transcription factors and signaling molecules expressed in the ventral ectoderm, dorsal ectoderm, and interposed neurogenic (“ciliary band”) region in response to the known key signaling molecules Nodal and BMP2/4 and defined the epistatic relationships between the most important genes. The resultant GRN showed a number of striking features. First, Nodal was found to be essential for the expression of all ventral and dorsal marker genes, and BMP2/4 for all dorsal genes. Second, goosecoid was identified as a central player in a regulatory sub-circuit controlling mouth formation, while tbx2/3 emerged as a critical factor for differentiation of the dorsal ectoderm. Finally, and unexpectedly, a neurogenic ectoderm regulatory circuit characterized by expression of “ciliary band” genes was triggered in the absence of TGF beta signaling. We propose a novel model for ectoderm regionalization, in which neural ectoderm is the default fate in the absence of TGF beta signaling, and suggest that the stomodeal and neural subcircuits that we uncovered may represent ancient regulatory pathways controlling embryonic patterning.
Vyšlo v časopise:
Ancestral Regulatory Circuits Governing Ectoderm Patterning Downstream of Nodal and BMP2/4 Revealed by Gene Regulatory Network Analysis in an Echinoderm. PLoS Genet 6(12): e32767. doi:10.1371/journal.pgen.1001259
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001259
Souhrn
Echinoderms, which are phylogenetically related to vertebrates and produce large numbers of transparent embryos that can be experimentally manipulated, offer many advantages for the analysis of the gene regulatory networks (GRN) regulating germ layer formation. During development of the sea urchin embryo, the ectoderm is the source of signals that pattern all three germ layers along the dorsal-ventral axis. How this signaling center controls patterning and morphogenesis of the embryo is not understood. Here, we report a large-scale analysis of the GRN deployed in response to the activity of this signaling center in the embryos of the Mediterranean sea urchin Paracentrotus lividus, in which studies with high spatial resolution are possible. By using a combination of in situ hybridization screening, overexpression of mRNA, recombinant ligand treatments, and morpholino-based loss-of-function studies, we identified a cohort of transcription factors and signaling molecules expressed in the ventral ectoderm, dorsal ectoderm, and interposed neurogenic (“ciliary band”) region in response to the known key signaling molecules Nodal and BMP2/4 and defined the epistatic relationships between the most important genes. The resultant GRN showed a number of striking features. First, Nodal was found to be essential for the expression of all ventral and dorsal marker genes, and BMP2/4 for all dorsal genes. Second, goosecoid was identified as a central player in a regulatory sub-circuit controlling mouth formation, while tbx2/3 emerged as a critical factor for differentiation of the dorsal ectoderm. Finally, and unexpectedly, a neurogenic ectoderm regulatory circuit characterized by expression of “ciliary band” genes was triggered in the absence of TGF beta signaling. We propose a novel model for ectoderm regionalization, in which neural ectoderm is the default fate in the absence of TGF beta signaling, and suggest that the stomodeal and neural subcircuits that we uncovered may represent ancient regulatory pathways controlling embryonic patterning.
Zdroje
1. ChristiaenL
DavidsonB
KawashimaT
PowellW
NollaH
2008 The transcription/migration interface in heart precursors of Ciona intestinalis. Science 320 1349 1352
2. ImaiKS
LevineM
SatohN
SatouY
2006 Regulatory blueprint for a chordate embryo. Science 312 1183 1187
3. ImaiKS
StolfiA
LevineM
SatouY
2009 Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system. Development 136 285 293
4. OliveriP
DavidsonEH
2004 Gene regulatory network controlling embryonic specification in the sea urchin. Curr Opin Genet Dev 14 351 360
5. LevineM
DavidsonEH
2005 Gene regulatory networks for development. Proc Natl Acad Sci U S A 102 4936 4942
6. StathopoulosA
LevineM
2005 Genomic regulatory networks and animal development. Dev Cell 9 449 462
7. DavidsonEH
RastJP
OliveriP
RansickA
CalestaniC
2002 A genomic regulatory network for development. Science 295 1669 1678
8. OliveriP
DavidsonEH
2004 Gene regulatory network analysis in sea urchin embryos. Methods Cell Biol 74 775 794
9. SodergrenE
WeinstockGM
DavidsonEH
CameronRA
GibbsRA
2006 The genome of the sea urchin Strongylocentrotus purpuratus. Science 314 941 952
10. AngererLM
AngererRC
2003 Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions. Curr Top Dev Biol 53 159 198
11. DavidsonEH
RastJP
OliveriP
RansickA
CalestaniC
2002 A genomic regulatory network for development. Science 295 1669 1678
12. DubocV
LaprazF
BesnardeauL
LepageT
2008 Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation. Dev Biol 320 49 59
13. DubocV
RottingerE
BesnardeauL
LepageT
2004 Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo. Dev Cell 6 397 410
14. RangeR
LaprazF
QuirinM
MarroS
BesnardeauL
2007 Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-β related to Vg1. Development 134 3649 3664
15. AngererLM
OleksynDW
LoganCY
McClayDR
DaleL
2000 A BMP pathway regulates cell fate allocation along the sea urchin animal-vegetal embryonic axis. Development 127 1105 1114
16. CzihakG
1963 Entwicklungsphysiologische Untersuchungen an Echininiden (Verteilung und bedeutung der Cytochomoxydase). Whilhem roux's Archiv EntwickMechOrg 154 272 292
17. ChildCM
1948 Exogastrulation by Sodium Azide and other inhibiting conditions in Strongylocentrotus purpuratus. J Exp Zool 107 1 38
18. PeaseDC
1941 Echinoderm bilateral determination in chemical concentration gradients I. The effects of cyanide, fericyanide, iodoacetate, picrate,dinitrophenol,urethane,iodine, malonate, etc. J Exp Zool 86 381 405
19. CoffmanJA
DavidsonEH
2001 Oral-aboral axis specification in the sea urchin embryo. I. Axis entrainment by respiratory asymmetry. Dev Biol 230 18 28
20. CoffmanJA
McCarthyJJ
Dickey-SimsC
RobertsonAJ
2004 Oral-aboral axis specification in the sea urchin embryo II. Mitochondrial distribution and redox state contribute to establishing polarity in Strongylocentrotus purpuratus. Dev Biol 273 160 171
21. CoffmanJA
ColuccioA
PlanchartA
RobertsonAJ
2009 Oral-aboral axis specification in the sea urchin embryo III. Role of mitochondrial redox signaling via H2O2. Dev Biol 330 123 130
22. BradhamCA
McClayDR
2006 p38 MAPK is essential for secondary axis specification and patterning in sea urchin embryos. Development 133 21 32
23. HardinJ
CoffmanJA
BlackSD
McClayDR
1992 Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2. Development 116 671 685
24. AnderssonO
ReissmannE
JornvallH
IbanezCF
2006 Synergistic interaction between Gdf1 and Nodal during anterior axis development. Dev Biol 293 370 381
25. TanakaC
SakumaR
NakamuraT
HamadaH
SaijohY
2007 Long-range action of Nodal requires interaction with GDF1. Genes Dev 21 3272 3282
26. LaprazF
BesnardeauL
LepageT
2009 Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. PLoS Biol 7 e1000248 doi:10.1371/journal.pbio.1000248
27. YaguchiS
YaguchiJ
BurkeRD
2006 Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos. Development 133 2337 2346
28. WeiZ
YaguchiJ
YaguchiS
AngererRC
AngererLM
2009 The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center. Development 136 1179 1189
29. SuYH
LiE
GeissGK
LongabaughWJ
KramerA
2009 A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo. Dev Biol 329 410 421
30. Howard-AshbyM
MaternaSC
BrownCT
ChenL
CameronRA
2006 Gene families encoding transcription factors expressed in early development of Strongylocentrotus purpuratus. Dev Biol 300 90 107
31. Howard-AshbyM
MaternaSC
BrownCT
ChenL
CameronRA
2006 Identification and characterization of homeobox transcription factor genes in Strongylocentrotus purpuratus, and their expression in embryonic development. Dev Biol 300 74 89
32. MaternaSC
Howard-AshbyM
GrayRF
DavidsonEH
2006 The C2H2 zinc finger genes of Strongylocentrotus purpuratus and their expression in embryonic development. Dev Biol 300 108 120
33. RizzoF
Fernandez-SerraM
SquarzoniP
ArchimandritisA
ArnoneMI
2006 Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus). Dev Biol 300 35 48
34. TuQ
BrownCT
DavidsonEH
OliveriP
2006 Sea urchin Forkhead gene family: Phylogeny and embryonic expression. Dev Biol
35. AngererLM
OleksynDW
LevineAM
LiX
KleinWH
2001 Sea urchin goosecoid function links fate specification along the animal- vegetal and oral-aboral embryonic axes. Development 128 4393 4404
36. LaprazF
RottingerE
DubocV
RangeR
DuloquinL
2006 RTK and TGF-beta signaling pathways genes in the sea urchin genome. Dev Biol 300 132 152
37. McCoonPE
AngererRC
AngererLM
1996 SpFGFR, a new member of the fibroblast growth factor receptor family, is developmentally regulated during early sea urchin development. J Biol Chem 271 20119 20125
38. BradhamCA
OikonomouC
KühnA
CoreAB
ModellJW
2009 Chordin is required for neural but not axial development in sea urchin embryos. Developmental Biology 328 221 233
39. PoustkaAJ
KuhnA
GrothD
WeiseV
YaguchiS
2007 A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks. Genome Biol 8 R85
40. CroceJ
LhomondG
GacheC
2003 Coquillette, a sea urchin T-box gene of the Tbx2 subfamily, is expressed asymmetrically along the oral-aboral axis of the embryo and is involved in skeletogenesis. Mech Dev 120 561 572
41. GrossJM
PetersonRE
WuSY
McClayDR
2003 LvTbx2/3: a T-box family transcription factor involved in formation of the oral/aboral axis of the sea urchin embryo. Development 130 1989 1999
42. OliveriP
WaltonKD
DavidsonEH
McClayDR
2006 Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo. Development 133 4173 4181
43. CroceJ
LhomondG
GacheC
2001 Expression pattern of Brachyury in the embryo of the sea urchin Paracentrotus lividus. Dev Genes Evol 211 617 619
44. GrossJM
McClayDR
2001 The Role of Brachyury (T) during Gastrulation Movements in the Sea Urchin Lytechinus variegatus. Dev Biol 239 132 147
45. MinokawaT
RastJP
Arenas-MenaC
FrancoCB
DavidsonEH
2004 Expression patterns of four different regulatory genes that function during sea urchin development. Gene Expr Patterns 4 449 456
46. OtimO
AmoreG
MinokawaT
McClayDR
DavidsonEH
2004 SpHnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis. Dev Biol 273 226 243
47. PoustkaAJ
KuhnA
RadosavljevicV
WellenreutherR
LehrachH
2004 On the origin of the chordate central nervous system: expression of onecut in the sea urchin embryo. Evol Dev 6 227 236
48. RottingerE
SaudemontA
DubocV
BesnardeauL
McClayD
2008 FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development. Development 135 353 365
49. AmoreG
YavrouianRG
PetersonKJ
RansickA
McClayDR
2003 Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks. Dev Biol 261 55 81
50. LiX
ChuangCK
MaoCA
AngererLM
KleinWH
1997 Two Otx proteins generated from multiple transcripts of a single gene in Strongylocentrotus purpuratus. Dev Biol 187 253 266
51. HwangSP
PartinJS
LennarzWJ
1994 Characterization of a homolog of human bone morphogenetic protein 1 in the embryo of the sea urchin, Strongylocentrotus purpuratus. Development 120 559 568
52. RottingerE
BesnardeauL
LepageT
2006 Expression pattern of three putative RNA-binding proteins during early development of the sea urchin Paracentrotus lividus. Gene Expr Patterns 6 864 872
53. WikramanayakeAH
PetersonR
ChenJ
HuangL
BinceJM
2004 Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages. Genesis 39 194 205
54. Di BernardoMG
GianguzzaF
CiaccioM
PallaF
ColomboP
1989 Nucleotide sequence of a full length cDNA clone encoding for beta-tubulin of the sea urchin Paracentrotus lividus. Nucleic Acids Res 17 5851
55. RottingerE
CroceJ
LhomondG
BesnardeauL
GacheC
2006 Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo. Development 133 4341 4353
56. DuloquinL
LhomondG
GacheC
2007 Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton. Development 134 2293 2302
57. ManuelM
MartynogaB
YuT
WestJD
MasonJO
2010 The transcription factor Foxg1 regulates the competence of telencephalic cells to adopt subpallial fates in mice. Development 137 487 497
58. MartynogaB
MorrisonH
PriceDJ
MasonJO
2005 Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis. Dev Biol 283 113 127
59. KennyAP
KozlowskiD
OleksynDW
AngererLM
AngererRC
1999 SpSoxB1, a maternally encoded transcription factor asymmetrically distributed among early sea urchin blastomeres. Development 126 5473 5483
60. MiyagiS
KatoH
OkudaA
2009 Role of SoxB1 transcription factors in development. Cell Mol Life Sci 66 3675 3684
61. SakumaR
Ohnishi YiY
MenoC
FujiiH
JuanH
2002 Inhibition of Nodal signalling by Lefty mediated through interaction with common receptors and efficient diffusion. Genes Cells 7 401 412
62. InmanGJ
NicolasFJ
CallahanJF
HarlingJD
GasterLM
2002 SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62 65 74
63. DirksenML
JamrichM
1992 A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain. Genes Dev 6 599 608
64. KnochelS
LefJ
ClementJ
KlockeB
HilleS
1992 Activin A induced expression of a fork head related gene in posterior chordamesoderm (notochord) of Xenopus laevis embryos. Mech Dev 38 157 165
65. Ruiz i AltabaA
JessellTM
1992 Pintallavis, a gene expressed in the organizer and midline cells of frog embryos: involvement in development of the neural axis. Development 116 81 93
66. BradhamC
McClayDR
2006 p38 MAPK in development and cancer. Cell Cycle 5 824 828
67. Jafar-NejadH
AcarM
NoloR
LacinH
PanH
2003 Senseless acts as a binary switch during sensory organ precursor selection. Genes Dev 17 2966 2978
68. WallisD
HamblenM
ZhouY
VenkenKJ
SchumacherA
2003 The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development 130 221 232
69. SuzukiA
KanekoE
MaedaJ
UenoN
1997 Mesoderm induction by BMP-4 and -7 heterodimers. Biochem Biophys Res Commun 232 153 156
70. ShimmiO
UmulisD
OthmerH
O'ConnorMB
2005 Facilitated transport of a Dpp/Scw heterodimer by Sog/Tsg leads to robust patterning of the Drosophila blastoderm embryo. Cell 120 873 886
71. OnaiT
YuJK
BlitzIL
ChoKW
HollandLZ
2010 Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Dev Biol 344 1 377 89
72. DeRobertisEM
2004 Goosecoid and gastrulation.
SternCD
Gastrulation, from cells to embryo London Cold Spring Harbor Laboratory press 581 589
73. MartindaleMQ
HejnolA
2009 A developmental perspective: changes in the position of the blastopore during bilaterian evolution. Dev Cell 17 162 174
74. De RobertisEM
BlumM
NiehrsC
SteinbeisserH
1992 Goosecoid and the organizer. Dev Suppl 167 171
75. OliveriP
TuQ
DavidsonEH
2008 Global regulatory logic for specification of an embryonic cell lineage. Proc Natl Acad Sci U S A 105 5955 5962
76. SharmaT
EttensohnCA
2010 Activation of the skeletogenic gene regulatory network in the early sea urchin embryo. Development 137 1149 1157
77. AffolterM
MartyT
ViganoMA
JazwinskaA
2001 Nuclear interpretation of Dpp signaling in Drosophila. EMBO J 20 3298 3305
78. VerschuerenK
RemacleJE
CollartC
KraftH
BakerBS
1999 SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J Biol Chem 274 20489 20498
79. BehestiH
HoltJK
SowdenJC
2006 The level of BMP4 signaling is critical for the regulation of distinct T-box gene expression domains and growth along the dorso-ventral axis of the optic cup. BMC Dev Biol 6 62
80. LoweCJ
TerasakiM
WuM
FreemanRMJr
RunftL
2006 Dorsoventral patterning in hemichordates: insights into early chordate evolution. PLoS Biol 4 e291 doi:10.1371/journal.pbio.0040291
81. HeM
WenL
CampbellCE
WuJY
RaoY
1999 Transcription repression by Xenopus ET and its human ortholog TBX3, a gene involved in ulnar-mammary syndrome. Proc Natl Acad Sci U S A 96 10212 10217
82. CarreiraS
DexterTJ
YavuzerU
EastyDJ
GodingCR
1998 Brachyury-related transcription factor Tbx2 and repression of the melanocyte-specific TRP-1 promoter. Mol Cell Biol 18 5099 5108
83. Gomez-SkarmetaJ
de La Calle-MustienesE
ModolellJ
2001 The Wnt-activated Xiro1 gene encodes a repressor that is essential for neural development and downregulates Bmp4. Development 128 551 560
84. ItohM
KudohT
DedekianM
KimCH
ChitnisAB
2002 A role for iro1 and iro7 in the establishment of an anteroposterior compartment of the ectoderm adjacent to the midbrain-hindbrain boundary. Development 129 2317 2327
85. Gomez-SkarmetaJL
ModolellJ
2002 Iroquois genes: genomic organization and function in vertebrate neural development. Curr Opin Genet Dev 12 403 408
86. NamJ
SuYH
LeePY
RobertsonAJ
CoffmanJA
2007 Cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network. Dev Biol 306 860 869
87. LeleZ
NowakM
HammerschmidtM
2001 Zebrafish admp is required to restrict the size of the organizer and to promote posterior and ventral development. Dev Dyn 222 681 687
88. WillotV
MathieuJ
LuY
SchmidB
SidiS
2002 Cooperative action of ADMP- and BMP-mediated pathways in regulating cell fates in the zebrafish gastrula. Dev Biol 241 59 78
89. MoosMJr
WangS
KrinksM
1995 Anti-dorsalizing morphogenetic protein is a novel TGF-beta homolog expressed in the Spemann organizer. Development 121 4293 4301
90. ReversadeB
De RobertisEM
2005 Regulation of ADMP and BMP2/4/7 at opposite embryonic poles generates a self-regulating morphogenetic field. Cell 123 1147 1160
91. HorstadiusS
1973 Experimental Embryology of Echinoderms Oxford Clarendon Press
92. YaguchiS
YaguchiJ
AngererRC
AngererLM
2008 A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos. Dev Cell 14 97 107
93. Ben-HaimN
LuC
Guzman-AyalaM
PescatoreL
MesnardD
2006 The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. Dev Cell 11 313 323
94. RottingerE
BesnardeauL
LepageT
2004 A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets. Development 131 1075 1087
95. FeldmanB
DouganST
SchierAF
TalbotWS
2000 Nodal-related signals establish mesendodermal fate and trunk neural identity in zebrafish [In Process Citation]. Curr Biol 10 531 534
96. SchierAF
2001 Axis formation and patterning in zebrafish. Curr Opin Genet Dev 11 393 404
97. CamusA
Perea-GomezA
MoreauA
CollignonJ
2006 Absence of Nodal signaling promotes precocious neural differentiation in the mouse embryo. Dev Biol 295 743 755
98. CameronRA
BrittenRJ
DavidsonEH
1993 The embryonic ciliated band of the sea urchin, Strongylocentrotus purpuratus derives from both oral and aboral ectoderm. Dev Biol 160 369 376
99. SummertonJ
1999 Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489 141 158
100. MoultonJD
YanYL
2008 Using Morpholinos to control gene expression. Curr Protoc Mol Biol Chapter 26 Unit 26 28
101. WilsonSI
EdlundT
2001 Neural induction: toward a unifying mechanism. Nat Neurosci 4 Suppl 1161 1168
102. ChangC
HarlandRM
2007 Neural induction requires continued suppression of both Smad1 and Smad2 signals during gastrulation. Development 134 3861 3872
103. Di-GregorioA
SanchoM
StuckeyDW
CromptonLA
GodwinJ
2007 BMP signalling inhibits premature neural differentiation in the mouse embryo. Development 134 3359 3369
104. AlvarezIS
AraujoM
NietoMA
1998 Neural induction in whole chick embryo cultures by FGF. Dev Biol 199 42 54
105. StreitA
BerlinerAJ
PapanayotouC
SirulnikA
SternCD
2000 Initiation of neural induction by FGF signalling before gastrulation. Nature 406 74 78
106. WilsonSI
GrazianoE
HarlandR
JessellTM
EdlundT
2000 An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo. Curr Biol 10 421 429
107. BertrandV
HudsonC
CaillolD
PopoviciC
LemaireP
2003 Neural tissue in ascidian embryos is induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Cell 115 615 627
108. HudsonC
DarrasS
CaillolD
YasuoH
LemaireP
2003 A conserved role for the MEK signalling pathway in neural tissue specification and posteriorisation in the invertebrate chordate, the ascidian Ciona intestinalis. Development 130 147 159
109. HudsonC
LemaireP
2001 Induction of anterior neural fates in the ascidian Ciona intestinalis. Mech Dev 100 189 203
110. DarrasS
NishidaH
2001 The BMP/CHORDIN antagonism controls sensory pigment cell specification and differentiation in the ascidian embryo. Dev Biol 236 271 288
111. HudsonC
YasuoH
2005 Patterning across the ascidian neural plate by lateral Nodal signalling sources. Development 132 1199 1210
112. Mieko MizutaniC
BierE
2008 EvoD/Vo: the origins of BMP signalling in the neuroectoderm. Nat Rev Genet 9 663 677
113. DenesAS
JekelyG
SteinmetzPR
RaibleF
SnymanH
2007 Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell 129 277 288
114. HudsonC
YasuoH
2006 A signalling relay involving Nodal and Delta ligands acts during secondary notochord induction in Ciona embryos. Development 133 2855 2864
115. SampathK
RubinsteinAL
ChengAM
LiangJO
FekanyK
1998 Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395 185 189
116. LepageT
GacheC
1989 Purification and characterization of the sea urchin embryo hatching enzyme. J Biol Chem 264 4787 4793
117. LepageT
GacheC
1990 Early expression of a collagenase-like hatching enzyme gene in the sea urchin embryo. Embo J 9 3003 3012
118. HarlandRM
1991 In situ hybridization: an improved whole mount method for Xenopus embryos.
KayBK
PengHJ
Methods in Cell Biology San Diego, Calif. Academic Press Inc. 685 695
119. ThisseB
HeyerV
LuxA
AlunniV
DegraveA
2004 Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. Methods Cell Biol 77 505 519
120. TurnerDL
WeintraubH
1994 Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev 8 1434 1447
121. EisenJS
SmithJC
2008 Controlling morpholino experiments: don't stop making antisense. Development 135 1735 1743
122. KennyAP
OleksynDW
NewmanLA
AngererRC
AngererLM
2003 Tight regulation of SpSoxB factors is required for patterning and morphogenesis in sea urchin embryos. Dev Biol 261 412 425
123. LongabaughWJ
DavidsonEH
BolouriH
2005 Computational representation of developmental genetic regulatory networks. Dev Biol 283 1 16
124. LongabaughWJ
DavidsonEH
BolouriH
2009 Visualization, documentation, analysis, and communication of large-scale gene regulatory networks. Biochim Biophys Acta 1789 363 374
125. StenzelP
AngererLM
SmithBJ
AngererRC
ValeWW
1994 The univin gene encodes a member of the transforming growth factor-beta superfamily with restricted expression in the sea urchin embryo. Dev Biol 166 149 158
126. DobiasSL
MaL
WuH
BellJR
MaxsonR
1997 The evolution of Msx gene function: expression and regulation of a sea urchin Msx class homeobox gene. Mech Dev 61 37 48
127. CroceJC
McClayDR
2006 The canonical Wnt pathway in embryonic axis polarity. Semin Cell Dev Biol 17 168 174
128. AngererLM
DoleckiGJ
GagnonML
LumR
WangG
1989 Progressively restricted expression of a homeo box gene within the aboral ectoderm of developing sea urchin embryos. Genes Dev 3 370 383
129. CoxKH
AngererLM
LeeJJ
DavidsonEH
AngererRC
1986 Cell lineage-specific programs of expression of multiple actin genes during sea urchin embryogenesis. J Mol Biol 188 159 172
130. YangQ
AngererLM
AngererRC
1989 Unusual pattern of accumulation of mRNA encoding EGF-related protein in sea urchin embryos. Science 246 806 808
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 12
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Functional Comparison of Innate Immune Signaling Pathways in Primates
- Expression of Linear and Novel Circular Forms of an -Associated Non-Coding RNA Correlates with Atherosclerosis Risk
- Genome-Wide Interrogation of Mammalian Stem Cell Fate Determinants by Nested Chromosome Deletions
- Histone H2A C-Terminus Regulates Chromatin Dynamics, Remodeling, and Histone H1 Binding