#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Noisy Splicing Drives mRNA Isoform Diversity in Human Cells


While the majority of multiexonic human genes show some evidence of alternative splicing, it is unclear what fraction of observed splice forms is functionally relevant. In this study, we examine the extent of alternative splicing in human cells using deep RNA sequencing and de novo identification of splice junctions. We demonstrate the existence of a large class of low abundance isoforms, encompassing approximately 150,000 previously unannotated splice junctions in our data. Newly-identified splice sites show little evidence of evolutionary conservation, suggesting that the majority are due to erroneous splice site choice. We show that sequence motifs involved in the recognition of exons are enriched in the vicinity of unconserved splice sites. We estimate that the average intron has a splicing error rate of approximately 0.7% and show that introns in highly expressed genes are spliced more accurately, likely due to their shorter length. These results implicate noisy splicing as an important property of genome evolution.


Vyšlo v časopise: Noisy Splicing Drives mRNA Isoform Diversity in Human Cells. PLoS Genet 6(12): e32767. doi:10.1371/journal.pgen.1001236
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001236

Souhrn

While the majority of multiexonic human genes show some evidence of alternative splicing, it is unclear what fraction of observed splice forms is functionally relevant. In this study, we examine the extent of alternative splicing in human cells using deep RNA sequencing and de novo identification of splice junctions. We demonstrate the existence of a large class of low abundance isoforms, encompassing approximately 150,000 previously unannotated splice junctions in our data. Newly-identified splice sites show little evidence of evolutionary conservation, suggesting that the majority are due to erroneous splice site choice. We show that sequence motifs involved in the recognition of exons are enriched in the vicinity of unconserved splice sites. We estimate that the average intron has a splicing error rate of approximately 0.7% and show that introns in highly expressed genes are spliced more accurately, likely due to their shorter length. These results implicate noisy splicing as an important property of genome evolution.


Zdroje

1. BlackDL

2003 Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72 291 336

2. l WangET

SandbergR

LuoS

KhrebtukovaI

ZhangL

2008 Alternative isoform regulation in human tissue transcriptomes. Nature 456 470 6

3. ZavolanM

KondoS

SchonbachC

AdachiJ

HumeDA

2003 Impact of alternative initiation, splicing, and termination on the diversity of the mRNA transcripts encoded by the mouse transcriptome. Genome Res 13 1290 300

4. MortazaviA

WilliamsBA

McCueK

SchaefferL

WoldB

2008 Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5 621 8

5. PanQ

ShaiO

LeeLJ

FreyBJ

BlencoweBJ

2008 Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40 1413 5

6. ModrekB

LeeC

2002 A genomic view of alternative splicing. Nat Genet 30 13 9

7. HurstLD

2009 Evolutionary genomics and the reach of selection. J Biol 8 12

8. MelamudE

MoultJ

2009 Stochastic noise in splicing machinery. Nucleic Acids Res 37 4873 86

9. ZhangC

KrainerAR

ZhangMQ

2007 Evolutionary impact of limited splicing fidelity in mammalian genes. Trends Genet 23 484 8

10. BaekD

GreenP

2005 Sequence conservation, relative isoform frequencies, and nonsense-mediated decay in evolutionarily conserved alternative splicing. Proc Natl Acad Sci U S A 102 12813 8

11. SorekR

ShamirR

AstG

2004 How prevalent is functional alternative splicing in the human genome? Trends Genet 20 68 71

12. YeoGW

Van NostrandE

HolsteD

PoggioT

BurgeCB

2005 Identification and analysis of alternative splicing events conserved in human and mouse. Proc Natl Acad Sci U S A 102 2850 5

13. ModrekB

LeeCJ

2003 Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat Genet 34 177 80

14. JaillonO

BouhoucheK

GoutJF

AuryJM

NoelB

2008 Translational control of intron splicing in eukaryotes. Nature 451 359 62

15. LynchM

2010 Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci U S A 107 961 8

16. LynchM

2007 The origins of genome architecture. Mass. Sinauer Associates

17. PickrellJK

MarioniJC

PaiAA

DegnerJF

EngelhardtBE

2010 Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464 768 72

18. SultanM

SchulzMH

RichardH

MagenA

KlingenhoffA

2008 A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321 956 60

19. MarioniJC

MasonCE

ManeSM

StephensM

GiladY

2008 RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18 1509 17

20. DouY

Fox-WalshKL

BaldiPF

HertelKJ

2006 Genomic splice-site analysis reveals frequent alternative splicing close to the dominant splice site. RNA 12 2047 56

21. ChernTM

van NimwegenE

KaiC

KawaiJ

CarninciP

2006 A simple physical model predicts small exon length variations. PLoS Genet 2 e45 doi:10.1371/journal.pgen.0020045

22. HillerM

PlatzerM

2008 Widespread and subtle: alternative splicing at short-distance tandem sites. Trends Genet 24 246 55

23. HsuF

KentWJ

ClawsonH

KuhnRM

DiekhansM

2006 The UCSC Known Genes. Bioinformatics 22 1036 46

24. HubbardTJP

AkenBL

AylingS

BallesterB

BealK

2009 Ensembl 2009. Nucleic Acids Res 37 D690 7

25. PruittKD

TatusovaT

MaglottDR

2007 NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35 D61 5

26. PruittKD

HarrowJ

HarteRA

WallinC

DiekhansM

2009 The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. Genome Res 19 1316 23

27. BensonDA

Karsch-MizrachiI

LipmanDJ

OstellJ

SayersEW

2010 GenBank. Nucleic Acids Res 38 D46 51

28. MontgomerySB

SammethM

Gutierrez-ArcelusM

LachRP

IngleC

2010 Transcriptome genetics using second generation sequencing in a caucasian population. Nature 464 773 7

29. KwanT

BenovoyD

DiasC

GurdS

ProvencherC

2008 Genome-wide analysis of transcript isoform variation in humans. Nat Genet 40 225 31

30. FraserHB

XieX

2009 Common polymorphic transcript variation in human disease. Genome Res 19 567 75

31. PollardKS

HubiszMJ

RosenbloomKR

SiepelA

2010 Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 20 110 21

32. Castillo-DavisCI

MekhedovSL

HartlDL

KooninEV

KondrashovFA

2002 Selection for short introns in highly expressed genes. Nat Genet 31 415 8

33. HurstLD

BruntonCF

SmithNG

1999 Small introns tend to occur in GC-rich regions in some but not all vertebrates. Trends Genet 15 437 9

34. YuY

MaroneyPA

DenkerJA

ZhangXHF

DybkovO

2008 Dynamic regulation of alternative splicing by silencers that modulate 5′ splice site competition. Cell 135 1224 36

35. FairbrotherWG

YehRF

SharpPA

BurgeCB

2002 Predictive identification of exonic splicing enhancers in human genes. Science 297 1007 13

36. WangZ

BurgeCB

2008 Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14 802 13

37. MatlinAJ

ClarkF

SmithCWJ

2005 Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6 386 98

38. BarashY

CalarcoJA

GaoW

PanQ

WangX

2010 Deciphering the splicing code. Nature 465 53 9

39. ZhangXHF

ChasinLA

2004 Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev 18 1241 50

40. WangZ

RolishME

YeoG

TungV

MawsonM

2004 Systematic identification and analysis of exonic splicing silencers. Cell 119 831 45

41. LucoRF

PanQ

TominagaK

BlencoweBJ

Pereira-SmithOM

2010 Regulation of alternative splicing by histone modifications. Science 327 996 1000

42. SpiesN

NielsenCB

PadgettRA

BurgeCB

2009 Biased chromatin signatures around polyadenylation sites and exons. Mol Cell 36 245 54

43. SchwartzS

MeshorerE

AstG

2009 Chromatin organization marks exon-intron structure. Nat Struct Mol Biol 16 990 5

44. TilgnerH

NikolaouC

AlthammerS

SammethM

BeatoM

2009 Nucleosome positioning as a determinant of exon recognition. Nat Struct Mol Biol 16 996 1001

45. AnderssonR

EnrothS

Rada-IglesiasA

WadeliusC

KomorowskiJ

2009 Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res 19 1732 41

46. Kolasinska-ZwierzP

DownT

LatorreI

LiuT

LiuXS

2009 Differential chromatin marking of introns and expressed exons by H3K36me3. Nat Genet 41 376 81

47. ParmleyJL

UrrutiaAO

PotrzebowskiL

KaessmannH

HurstLD

2007 Splicing and the evolution of proteins in mammals. PLoS Biol 5 e14 doi:10.1371/journal.pbio.0050014

48. ZhangC

LiWH

KrainerAR

ZhangMQ

2008 Rna landscape of evolution for optimal exon and intron discrimination. Proc Natl Acad Sci U S A 105 5797 802

49. RoyM

KimN

XingY

LeeC

2008 The effect of intron length on exon creation ratios during the evolution of mammalian genomes. RNA 14 2261 73

50. Fox-WalshKL

DouY

LamBJ

HungSP

BaldiPF

2005 The architecture of pre-mrnas affects mechanisms of splice-site pairing. Proc Natl Acad Sci U S A 102 16176 81

51. CarvalhoAB

ClarkAG

1999 Intron size and natural selection. Nature 401 344

52. LynchM

2002 Intron evolution as a population-genetic process. Proc Natl Acad Sci U S A 99 6118 23

53. KimE

MagenA

AstG

2007 Different levels of alternative splicing among eukaryotes. Nucleic Acids Res 35 125 31

54. WuJQ

HabeggerL

NoisaP

SzekelyA

QiuC

2010 Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proc Natl Acad Sci U S A

55. TrapnellC

PachterL

SalzbergSL

2009 Tophat: discovering splice junctions with RNA-Seq. Bioinformatics 25 1105 11

56. TrapnellC

WilliamsBA

PerteaG

MortazaviA

KwanG

2010 Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28 511 5

57. GuttmanM

GarberM

LevinJZ

DonagheyJ

RobinsonJ

2010 Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28 503 10

58. AmeurA

WetterbomA

FeukL

GyllenstenU

2010 Global and unbiased detection of splice junctions from RNA-seq data. Genome Biol 11 R34

59. AuKF

JiangH

LinL

XingY

WongWH

2010 Detection of splice junctions from paired-end RNA-seq data by SpliceMap. Nucleic Acids Res 38 4570 8

60. YassourM

KaplanT

FraserHB

LevinJZ

PfiffnerJ

2009 Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing. Proc Natl Acad Sci U S A 106 3264 9

61. LiH

DurbinR

2009 Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25 1754 60

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#