The EpsE Flagellar Clutch Is Bifunctional and Synergizes with EPS Biosynthesis to Promote Biofilm Formation
Many bacteria inhibit motility concomitant with the synthesis of an extracellular polysaccharide matrix and the formation of biofilm aggregates. In Bacillus subtilis biofilms, motility is inhibited by EpsE, which acts as a clutch on the flagella rotor to inhibit motility, and which is encoded within the 15 gene eps operon required for EPS production. EpsE shows sequence similarity to the glycosyltransferase family of enzymes, and we demonstrate that the conserved active site motif is required for EPS biosynthesis. We also screen for residues specifically required for either clutch or enzymatic activity and demonstrate that the two functions are genetically separable. Finally, we show that, whereas EPS synthesis activity is dominant for biofilm formation, both functions of EpsE synergize to stabilize cell aggregates and relieve selective pressure to abolish motility by genetic mutation. Thus, the transition from motility to biofilm formation may be governed by a single bifunctional enzyme.
Vyšlo v časopise:
The EpsE Flagellar Clutch Is Bifunctional and Synergizes with EPS Biosynthesis to Promote Biofilm Formation. PLoS Genet 6(12): e32767. doi:10.1371/journal.pgen.1001243
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001243
Souhrn
Many bacteria inhibit motility concomitant with the synthesis of an extracellular polysaccharide matrix and the formation of biofilm aggregates. In Bacillus subtilis biofilms, motility is inhibited by EpsE, which acts as a clutch on the flagella rotor to inhibit motility, and which is encoded within the 15 gene eps operon required for EPS production. EpsE shows sequence similarity to the glycosyltransferase family of enzymes, and we demonstrate that the conserved active site motif is required for EPS biosynthesis. We also screen for residues specifically required for either clutch or enzymatic activity and demonstrate that the two functions are genetically separable. Finally, we show that, whereas EPS synthesis activity is dominant for biofilm formation, both functions of EpsE synergize to stabilize cell aggregates and relieve selective pressure to abolish motility by genetic mutation. Thus, the transition from motility to biofilm formation may be governed by a single bifunctional enzyme.
Zdroje
1. O'TooleG
KaplanHB
KolterR
2000 Biofilm Formation as Microbial Development. Ann Rev Microbiol 54 49 79
2. KolterR
GreenbergEP
2006 Microbial sciences: The superficial life of microbes. Nature 441 300 302
3. O'TooleGA
KolterR
1998 Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30 295 304
4. PrattLA
KolterR
1998 Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30 285 293
5. WatnickPI
KolterR
1999 Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34 586 595
6. SauerK
CamperAK
EhrlichGD
CostertonJW
DaviesDG
2002 Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184 1140 1154
7. RömlingU
AmikamD
2006 Cyclic di-GMP as a second messenger. Curr Opin Microbiol 9 218 228
8. LemonKP
HigginsDE
KolterR
2007 Flagellar motility is critical for Listeria monocytogenes biofilm formation. J Bacteriol 189 4418 4424
9. BrandaSS
VikS
FriedmanL
KolterR
2005 Biofilms: the matrix revisited. Trends Microbiol 13 20 26
10. KearnsDB
ChuF
BrandaSS
KolterR
LosickR
2005 A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55 739 749
11. BrandaSS
ChuF
KearnsDB
LosickR
KolterR
2006 A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59 1229 1238
12. RomeroD
AguilarC
LosickR
KolterR
2010 Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci 107 2230 2234
13. AguilarC
VlamakisH
LosickR
KolterR
2007 Thinking about Bacillus subtilis as a multicellular organism. Curr Opin Microbiol 10 638 643
14. ChuF
KearnsDB
McLoonA
ChaiY
KolterR
2008 A novel regulatory protein governing biofilm formation in Bacillus subtilis. Mol Microbiol 68 1117 1127
15. KobayashiK
2008 SlrR/SlrA control the initiation of biofilm formation in Bacillus subtilis. Mol Microbiol 69 1399 1410
16. WinkelmanJT
BlairKM
KearnsDB
2009 RemA (YlzA) and RemB (YaaB) Regulate Extracellular Matrix Operon Expression and Biofilm Formation in Bacillus subtilis. J Bacteriol 191 3981 3991
17. BlairKM
TurnerL
WinkelmanJT
BergHC
KearnsDB
2008 A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320 1636 1638
18. MacnabRM
2003 How bacteria assemble flagella. Annu Rev Microbiol 57 77 100
19. ChevanceFF
HughesKT
2008 Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 6 455 465
20. BlairDF
BergHC
1990 The MotA protein of E. coli is a proton-conducting component of the flagellar motor. Cell 60 439 449
21. KojimaS
BlairDF
2001 Conformational Change in the Stator of the Bacterial Flagellar Motor. Biochemistry 40 13041 50
22. BergHC
2003 The Rotary Motor of Bacterial Flagella. Annu Rev Biochem 72 19 54
23. LloydSA
TangH
WangX
BillingsS
BlairDF
1996 Torque generation in the flagellar motor of Escherichia coli: evidence of a direct role for FliG but not for FliM or FliN. J Bacteriol 178 223 231
24. ZhouJ
LloydSA
BlairDF
1998 Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc Natl Acad Sci 95 6436 6441
25. ThomasDR
FrancisNR
XuC
DeRosierDJ
2006 The Three-Dimensional Structure of the Flagellar Rotor from a Clockwise-Locked Mutant of Salmonella enterica Serovar Typhimurium. J Bacteriol 188 7039 7048
26. CharnockSJ
DaviesGJ
1999 Structure of the Nucleotide-Diphospho-Sugar Transferase, SspA from Bacillus subtilis, in Native and Nucleotide-Complexed Forms. Biochemistry 38 6380 6385
27. Garinot-SchneiderC
LellouchAC
GeremiaRA
2000 Identification of Essential Amino Acid Residues in the Sinorhizobium meliloti Glucosyltransferase ExoM. J Biol Chem 275 31407 13
28. YipES
GeszvainK
DeLoney-MarinoCR
VisickKL
2006 The symbiosis regulator RscS controls the syp gene locus, biofilm formation and symbiotic aggregation by Vibrio fischeri. Mol Microbiol 62 1586 1600
29. BrandaSS
Gonzalez-PastorJE
Ben-YehudaS
LosickR
KolterR
2001 Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci 98 11621 11626
30. BretonC
SnajdrovaL
JeanneauC
KocaJ
ImbertyA
2006 Structures and mechanisms of glycosyltransferases. Glycobiology 16 29R 37R
31. JonesCJ
MacnabRM
OkinoH
AizawaS
1990 Stoichiometric analysis of the flagellar hook-(basal-body) complex of Salmonella typhimurium. J Mol Biol 212 377 387
32. FrancisNR
IrikuraVM
YamaguchiS
RosierDJ
MacnabRM
1992 Localization of the Salmonella typhimurium flagellar switch protein FliG to the cytoplasmic M-ring face of the basal body. Proc Natl Acad Sci 89 6304 6308
33. LloydSA
WhitbyFG
BlairDF
HillCP
1999 Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Nature 400 472 475
34. WhitfieldC
2006 Biosynthesis and Assembly of Capsular Polysaccharides in Escherichia coli. Ann Rev Biochem 75 39 68
35. TarbouriechN
CharnockSJ
DaviesGJ
2001 Three-dimensional Structures of the Mn and Mg dTDP Complexes of the Family GT-2 Glycosyltransferase SspA: A comparison with Related NDP-sugar Glycosyltransferases. J Mol Biol 314 655 661
36. WrayLVJr
ZalieckasJM
FisherSH
2001 Bacillus subtilis Glutamine Synthetase Controls Gene Expression through a Protein-Protein Interaction with Transcription Factor TnrA. Cell 107 427 435
37. FisherSH
WrayLVJr
2008 Bacillus subtilis glutamine synthetase regulates its own synthesis by acting as a chaperone to stabilize GlnR-DNA complexes. Proc Natl Acad Sci 105 1014 1019
38. LazarevicV
SoldoB
MedicoN
PooleyH
BronS
2005 Bacillus subtilis alpha-phosphoglucomutase is required for normal cell morphology and biofilm formation. Appl Environ Microbiol 71 39 45
39. WeartRB
LeeAH
ChienAC
HaeusserDP
HillNS
2007 A metabolic sensor governing cell size in bacteria. Cell 130 335 347
40. GründlingA
BurrackLS
BouwerHG
HigginsDE
2004 Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc Natl Acad Sci 101 12318 12323
41. ShenA
HigginsDE
2006 The MogR Transcriptional Repressor Regulates Nonhierarchal Expression of Flagellar Motility Genes and Virulence in Listeria Monocytogenes. PLoS Pathog 2 e30 doi:10.1371/journal.ppat.0020030
42. ShenA
KampHD
GründlingA
HigginsDE
2006 A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Genes Dev 20 3283 3295
43. BoehmA
KaiserM
LiH
SpanglerC
KasperCA
2010 Second Messenger-Mediated Adjustment of Bacterial Swimming Velocity. Cell 141 107 116
44. FangX
GomelskyM
2010 A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. Mol Microbiol 76 1295 1305
45. PaulK
NietoV
CarlquistWC
BlairDF
HarsheyRM
2010 The c-di-GMP Binding Protein YcgR Controls Flagellar Motor Direction and Speed to Affect Chemotaxis by a “Backstop Brake” Mechanism. Mol Cell 38 128 139
46. SimmR
MorrM
KaderA
NimtzM
RömlingU
2004 GGDEF and EAL domains inversely regulate cyclic-di-GMP levels and transition from sessility to motility. Mol Microbiol 53 1123 1134
47. McClaineJW
FordRM
2002 Reversal of flagellar rotation is important in initial attachment of Escherichia coli to glass in a dynamic system with high- and low-ionic-strength buffers. Appl Environ Microbiol 68 1280 1289
48. MerrittJH
BrothersKM
KuchmaSL
O'TooleGA
2007 SadC Reciprocally Influences Biofilm Formation and Swarming Motility via Modulation of Exopolysaccharide Production and Flagellar Function. J Bacteriol 189 8154 8164
49. ChaiY
NormanT
KolterR
LosickR
2010 An epigenetic switch governing daughter cell separation in Bacillus subtilis. Genes and Dev 24 754 765
50. KearnsDB
LosickR
2005 Cell population heterogeneity during growth of Bacillus subtilis. Genes and Dev 19 3083 3094
51. KearnsDB
LosickR
2003 Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49 581 590
52. KelleyJT
ParkerCD
1981 Identification and preliminary characterization of Vibrio cholerae outer membrane proteins. J Bacteriol 145 1018 1024
53. BatesPA
SternbergMJE
1999 Model Building by Comparison at CASP3: Using Expert Knowledge and Computer Automation. Proteins: Struct Funct and Genet Suppl 3 47 54
54. BatesPA
KelleyLA
MacCallumRM
SternbergMJE
2001 Enhancement of Protein Modelling by Human Intervention in Applying the Automatic Programs 3D-JIGSAW and 3D-PSSM. Proteins: Struct Funct and Genet Suppl 5 39 46
55. Contreras-MoreiraB
BatesPA
2002 Domain Fishing: a first step in protein comparative modelling. Bioinformatics 18 1141 1142
56. YasbinRE
YoungFE
1974 Transduction in Bacillus subtilis by Bacteriophage SPP1. J Virol 14 1343 1348
57. Guerot-FleuryAM
FrandsenN
StragierP
1996 Plasmids for ectopic integration in Bacillus subtilis. Gene 180 57 61
58. WaldoGS
StandishBM
BerendzenJ
TerwilligerTC
1999 Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol 17 691 695
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 12
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Functional Comparison of Innate Immune Signaling Pathways in Primates
- Expression of Linear and Novel Circular Forms of an -Associated Non-Coding RNA Correlates with Atherosclerosis Risk
- Genome-Wide Interrogation of Mammalian Stem Cell Fate Determinants by Nested Chromosome Deletions
- Histone H2A C-Terminus Regulates Chromatin Dynamics, Remodeling, and Histone H1 Binding