#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The EpsE Flagellar Clutch Is Bifunctional and Synergizes with EPS Biosynthesis to Promote Biofilm Formation


Many bacteria inhibit motility concomitant with the synthesis of an extracellular polysaccharide matrix and the formation of biofilm aggregates. In Bacillus subtilis biofilms, motility is inhibited by EpsE, which acts as a clutch on the flagella rotor to inhibit motility, and which is encoded within the 15 gene eps operon required for EPS production. EpsE shows sequence similarity to the glycosyltransferase family of enzymes, and we demonstrate that the conserved active site motif is required for EPS biosynthesis. We also screen for residues specifically required for either clutch or enzymatic activity and demonstrate that the two functions are genetically separable. Finally, we show that, whereas EPS synthesis activity is dominant for biofilm formation, both functions of EpsE synergize to stabilize cell aggregates and relieve selective pressure to abolish motility by genetic mutation. Thus, the transition from motility to biofilm formation may be governed by a single bifunctional enzyme.


Vyšlo v časopise: The EpsE Flagellar Clutch Is Bifunctional and Synergizes with EPS Biosynthesis to Promote Biofilm Formation. PLoS Genet 6(12): e32767. doi:10.1371/journal.pgen.1001243
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001243

Souhrn

Many bacteria inhibit motility concomitant with the synthesis of an extracellular polysaccharide matrix and the formation of biofilm aggregates. In Bacillus subtilis biofilms, motility is inhibited by EpsE, which acts as a clutch on the flagella rotor to inhibit motility, and which is encoded within the 15 gene eps operon required for EPS production. EpsE shows sequence similarity to the glycosyltransferase family of enzymes, and we demonstrate that the conserved active site motif is required for EPS biosynthesis. We also screen for residues specifically required for either clutch or enzymatic activity and demonstrate that the two functions are genetically separable. Finally, we show that, whereas EPS synthesis activity is dominant for biofilm formation, both functions of EpsE synergize to stabilize cell aggregates and relieve selective pressure to abolish motility by genetic mutation. Thus, the transition from motility to biofilm formation may be governed by a single bifunctional enzyme.


Zdroje

1. O'TooleG

KaplanHB

KolterR

2000 Biofilm Formation as Microbial Development. Ann Rev Microbiol 54 49 79

2. KolterR

GreenbergEP

2006 Microbial sciences: The superficial life of microbes. Nature 441 300 302

3. O'TooleGA

KolterR

1998 Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30 295 304

4. PrattLA

KolterR

1998 Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30 285 293

5. WatnickPI

KolterR

1999 Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34 586 595

6. SauerK

CamperAK

EhrlichGD

CostertonJW

DaviesDG

2002 Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184 1140 1154

7. RömlingU

AmikamD

2006 Cyclic di-GMP as a second messenger. Curr Opin Microbiol 9 218 228

8. LemonKP

HigginsDE

KolterR

2007 Flagellar motility is critical for Listeria monocytogenes biofilm formation. J Bacteriol 189 4418 4424

9. BrandaSS

VikS

FriedmanL

KolterR

2005 Biofilms: the matrix revisited. Trends Microbiol 13 20 26

10. KearnsDB

ChuF

BrandaSS

KolterR

LosickR

2005 A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55 739 749

11. BrandaSS

ChuF

KearnsDB

LosickR

KolterR

2006 A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59 1229 1238

12. RomeroD

AguilarC

LosickR

KolterR

2010 Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci 107 2230 2234

13. AguilarC

VlamakisH

LosickR

KolterR

2007 Thinking about Bacillus subtilis as a multicellular organism. Curr Opin Microbiol 10 638 643

14. ChuF

KearnsDB

McLoonA

ChaiY

KolterR

2008 A novel regulatory protein governing biofilm formation in Bacillus subtilis. Mol Microbiol 68 1117 1127

15. KobayashiK

2008 SlrR/SlrA control the initiation of biofilm formation in Bacillus subtilis. Mol Microbiol 69 1399 1410

16. WinkelmanJT

BlairKM

KearnsDB

2009 RemA (YlzA) and RemB (YaaB) Regulate Extracellular Matrix Operon Expression and Biofilm Formation in Bacillus subtilis. J Bacteriol 191 3981 3991

17. BlairKM

TurnerL

WinkelmanJT

BergHC

KearnsDB

2008 A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320 1636 1638

18. MacnabRM

2003 How bacteria assemble flagella. Annu Rev Microbiol 57 77 100

19. ChevanceFF

HughesKT

2008 Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 6 455 465

20. BlairDF

BergHC

1990 The MotA protein of E. coli is a proton-conducting component of the flagellar motor. Cell 60 439 449

21. KojimaS

BlairDF

2001 Conformational Change in the Stator of the Bacterial Flagellar Motor. Biochemistry 40 13041 50

22. BergHC

2003 The Rotary Motor of Bacterial Flagella. Annu Rev Biochem 72 19 54

23. LloydSA

TangH

WangX

BillingsS

BlairDF

1996 Torque generation in the flagellar motor of Escherichia coli: evidence of a direct role for FliG but not for FliM or FliN. J Bacteriol 178 223 231

24. ZhouJ

LloydSA

BlairDF

1998 Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc Natl Acad Sci 95 6436 6441

25. ThomasDR

FrancisNR

XuC

DeRosierDJ

2006 The Three-Dimensional Structure of the Flagellar Rotor from a Clockwise-Locked Mutant of Salmonella enterica Serovar Typhimurium. J Bacteriol 188 7039 7048

26. CharnockSJ

DaviesGJ

1999 Structure of the Nucleotide-Diphospho-Sugar Transferase, SspA from Bacillus subtilis, in Native and Nucleotide-Complexed Forms. Biochemistry 38 6380 6385

27. Garinot-SchneiderC

LellouchAC

GeremiaRA

2000 Identification of Essential Amino Acid Residues in the Sinorhizobium meliloti Glucosyltransferase ExoM. J Biol Chem 275 31407 13

28. YipES

GeszvainK

DeLoney-MarinoCR

VisickKL

2006 The symbiosis regulator RscS controls the syp gene locus, biofilm formation and symbiotic aggregation by Vibrio fischeri. Mol Microbiol 62 1586 1600

29. BrandaSS

Gonzalez-PastorJE

Ben-YehudaS

LosickR

KolterR

2001 Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci 98 11621 11626

30. BretonC

SnajdrovaL

JeanneauC

KocaJ

ImbertyA

2006 Structures and mechanisms of glycosyltransferases. Glycobiology 16 29R 37R

31. JonesCJ

MacnabRM

OkinoH

AizawaS

1990 Stoichiometric analysis of the flagellar hook-(basal-body) complex of Salmonella typhimurium. J Mol Biol 212 377 387

32. FrancisNR

IrikuraVM

YamaguchiS

RosierDJ

MacnabRM

1992 Localization of the Salmonella typhimurium flagellar switch protein FliG to the cytoplasmic M-ring face of the basal body. Proc Natl Acad Sci 89 6304 6308

33. LloydSA

WhitbyFG

BlairDF

HillCP

1999 Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Nature 400 472 475

34. WhitfieldC

2006 Biosynthesis and Assembly of Capsular Polysaccharides in Escherichia coli. Ann Rev Biochem 75 39 68

35. TarbouriechN

CharnockSJ

DaviesGJ

2001 Three-dimensional Structures of the Mn and Mg dTDP Complexes of the Family GT-2 Glycosyltransferase SspA: A comparison with Related NDP-sugar Glycosyltransferases. J Mol Biol 314 655 661

36. WrayLVJr

ZalieckasJM

FisherSH

2001 Bacillus subtilis Glutamine Synthetase Controls Gene Expression through a Protein-Protein Interaction with Transcription Factor TnrA. Cell 107 427 435

37. FisherSH

WrayLVJr

2008 Bacillus subtilis glutamine synthetase regulates its own synthesis by acting as a chaperone to stabilize GlnR-DNA complexes. Proc Natl Acad Sci 105 1014 1019

38. LazarevicV

SoldoB

MedicoN

PooleyH

BronS

2005 Bacillus subtilis alpha-phosphoglucomutase is required for normal cell morphology and biofilm formation. Appl Environ Microbiol 71 39 45

39. WeartRB

LeeAH

ChienAC

HaeusserDP

HillNS

2007 A metabolic sensor governing cell size in bacteria. Cell 130 335 347

40. GründlingA

BurrackLS

BouwerHG

HigginsDE

2004 Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc Natl Acad Sci 101 12318 12323

41. ShenA

HigginsDE

2006 The MogR Transcriptional Repressor Regulates Nonhierarchal Expression of Flagellar Motility Genes and Virulence in Listeria Monocytogenes. PLoS Pathog 2 e30 doi:10.1371/journal.ppat.0020030

42. ShenA

KampHD

GründlingA

HigginsDE

2006 A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Genes Dev 20 3283 3295

43. BoehmA

KaiserM

LiH

SpanglerC

KasperCA

2010 Second Messenger-Mediated Adjustment of Bacterial Swimming Velocity. Cell 141 107 116

44. FangX

GomelskyM

2010 A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. Mol Microbiol 76 1295 1305

45. PaulK

NietoV

CarlquistWC

BlairDF

HarsheyRM

2010 The c-di-GMP Binding Protein YcgR Controls Flagellar Motor Direction and Speed to Affect Chemotaxis by a “Backstop Brake” Mechanism. Mol Cell 38 128 139

46. SimmR

MorrM

KaderA

NimtzM

RömlingU

2004 GGDEF and EAL domains inversely regulate cyclic-di-GMP levels and transition from sessility to motility. Mol Microbiol 53 1123 1134

47. McClaineJW

FordRM

2002 Reversal of flagellar rotation is important in initial attachment of Escherichia coli to glass in a dynamic system with high- and low-ionic-strength buffers. Appl Environ Microbiol 68 1280 1289

48. MerrittJH

BrothersKM

KuchmaSL

O'TooleGA

2007 SadC Reciprocally Influences Biofilm Formation and Swarming Motility via Modulation of Exopolysaccharide Production and Flagellar Function. J Bacteriol 189 8154 8164

49. ChaiY

NormanT

KolterR

LosickR

2010 An epigenetic switch governing daughter cell separation in Bacillus subtilis. Genes and Dev 24 754 765

50. KearnsDB

LosickR

2005 Cell population heterogeneity during growth of Bacillus subtilis. Genes and Dev 19 3083 3094

51. KearnsDB

LosickR

2003 Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49 581 590

52. KelleyJT

ParkerCD

1981 Identification and preliminary characterization of Vibrio cholerae outer membrane proteins. J Bacteriol 145 1018 1024

53. BatesPA

SternbergMJE

1999 Model Building by Comparison at CASP3: Using Expert Knowledge and Computer Automation. Proteins: Struct Funct and Genet Suppl 3 47 54

54. BatesPA

KelleyLA

MacCallumRM

SternbergMJE

2001 Enhancement of Protein Modelling by Human Intervention in Applying the Automatic Programs 3D-JIGSAW and 3D-PSSM. Proteins: Struct Funct and Genet Suppl 5 39 46

55. Contreras-MoreiraB

BatesPA

2002 Domain Fishing: a first step in protein comparative modelling. Bioinformatics 18 1141 1142

56. YasbinRE

YoungFE

1974 Transduction in Bacillus subtilis by Bacteriophage SPP1. J Virol 14 1343 1348

57. Guerot-FleuryAM

FrandsenN

StragierP

1996 Plasmids for ectopic integration in Bacillus subtilis. Gene 180 57 61

58. WaldoGS

StandishBM

BerendzenJ

TerwilligerTC

1999 Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol 17 691 695

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#