#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Identification of Genes Required for Neural-Specific Glycosylation Using Functional Genomics


Glycosylation plays crucial regulatory roles in various biological processes such as development, immunity, and neural functions. For example, α1,3-fucosylation, the addition of a fucose moiety abundant in Drosophila neural cells, is essential for neural development, function, and behavior. However, it remains largely unknown how neural-specific α1,3-fucosylation is regulated. In the present study, we searched for genes involved in the glycosylation of a neural-specific protein using a Drosophila RNAi library. We obtained 109 genes affecting glycosylation that clustered into nine functional groups. Among them, members of the RNA regulation group were enriched by a secondary screen that identified genes specifically regulating α1,3-fucosylation. Further analyses revealed that an RNA–binding protein, second mitotic wave missing (Swm), upregulates expression of the neural-specific glycosyltransferase FucTA and facilitates its mRNA export from the nucleus. This first large-scale genetic screen for glycosylation-related genes has revealed novel regulation of fucTA mRNA in neural cells.


Vyšlo v časopise: Identification of Genes Required for Neural-Specific Glycosylation Using Functional Genomics. PLoS Genet 6(12): e32767. doi:10.1371/journal.pgen.1001254
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001254

Souhrn

Glycosylation plays crucial regulatory roles in various biological processes such as development, immunity, and neural functions. For example, α1,3-fucosylation, the addition of a fucose moiety abundant in Drosophila neural cells, is essential for neural development, function, and behavior. However, it remains largely unknown how neural-specific α1,3-fucosylation is regulated. In the present study, we searched for genes involved in the glycosylation of a neural-specific protein using a Drosophila RNAi library. We obtained 109 genes affecting glycosylation that clustered into nine functional groups. Among them, members of the RNA regulation group were enriched by a secondary screen that identified genes specifically regulating α1,3-fucosylation. Further analyses revealed that an RNA–binding protein, second mitotic wave missing (Swm), upregulates expression of the neural-specific glycosyltransferase FucTA and facilitates its mRNA export from the nucleus. This first large-scale genetic screen for glycosylation-related genes has revealed novel regulation of fucTA mRNA in neural cells.


Zdroje

1. KurosakaA

YanoA

ItohN

KurodaY

NakagawaT

1991 The structure of a neural specific carbohydrate epitope of horseradish peroxidase recognized by anti-horseradish peroxidase antiserum. J Biol Chem 266 4168 4172

2. JanLY

JanYN

1982 Antibodies to horseradish peroxidase as specific neuronal markers in Drosophila and in grasshopper embryos. Proc Natl Acad Sci U S A 79 2700 2704

3. KatzF

MoatsW

JanYN

1988 A carbohydrate epitope expressed uniquely on the cell surface of Drosophila neurons is altered in the mutant nac (neurally altered carbohydrate). EMBO J 7 3471 3477

4. WhitlockKE

1993 Development of Drosophila wing sensory neurons in mutants with missing or modified cell surface molecules. Development 117 1251 1260

5. PhillisRW

BramlageAT

WotusC

WhittakerA

GramatesLS

1993 Isolation of mutations affecting neural circuitry required for grooming behavior in Drosophila melanogaster. Genetics 133 581 592

6. FabiniG

FreilingerA

AltmannF

WilsonIB

2001 Identification of core alpha 1,3-fucosylated glycans and cloning of the requisite fucosyltransferase cDNA from Drosophila melanogaster. Potential basis of the neural anti-horseadish peroxidase epitope. J Biol Chem 276 28058 28067

7. SarkarM

LeventisPA

SilvescuCI

ReinholdVN

SchachterH

2006 Null mutations in Drosophila N-acetylglucosaminyltransferase I produce defects in locomotion and a reduced life span. J Biol Chem 281 12776 12785

8. OkajimaT

ReddyB

MatsudaT

IrvineKD

2008 Contributions of chaperone and glycosyltransferase activities of O-fucosyltransferase 1 to Notch signaling. BMC Biol 6 1

9. LuhnK

LaskowskaA

PielageJ

KlambtC

IpeU

2004 Identification and molecular cloning of a functional GDP-fucose transporter in Drosophila melanogaster. Exp Cell Res 301 242 250

10. IshikawaHO

HigashiS

AyukawaT

SasamuraT

KitagawaM

2005 Notch deficiency implicated in the pathogenesis of congenital disorder of glycosylation IIc. Proc Natl Acad Sci U S A 102 18532 18537

11. SelleckSB

2001 Genetic dissection of proteoglycan function in Drosophila and C. elegans. Semin Cell Dev Biol 12 127 134

12. NybakkenK

PerrimonN

2002 Heparan sulfate proteoglycan modulation of developmental signaling in Drosophila. Biochim Biophys Acta 1573 280 291

13. HainesN

IrvineKD

2003 Glycosylation regulates Notch signalling. Nat Rev Mol Cell Biol 4 786 797

14. DongX

ZavitzKH

ThomasBJ

LinM

CampbellS

1997 Control of G1 in the developing Drosophila eye: rca1 regulates Cyclin A. Genes Dev 11 94 105

15. Van VactorDJr

KrantzDE

ReinkeR

ZipurskySL

1988 Analysis of mutants in chaoptin, a photoreceptor cell-specific glycoprotein in Drosophila, reveals its role in cellular morphogenesis. Cell 52 281 290

16. KanieY

Yamamoto-HinoM

KarinoY

YokozawaH

NishiharaS

2009 Insight into the regulation of glycan synthesis in Drosophila chaoptin based on mass spectrometry. PLoS ONE 4 e5434 doi:10.1371/journal.pone.0005434

17. KrantzDE

ZipurskySL

1990 Drosophila chaoptin, a member of the leucine-rich repeat family, is a photoreceptor cell-specific adhesion molecule. EMBO J 9 1969 1977

18. Hirai-FujitaY

Yamamoto-HinoM

KanieO

GotoS

2008 N-Glycosylation of the Drosophila neural protein Chaoptin is essential for its stability, cell surface transport and adhesive activity. FEBS Lett 582 2572 2576

19. FreezeHH

1995 Lectin Affinity Chromatograpy, Current Protocol in Protein Science;

ColiganJE

DunnBM

PloeghHL

SpeicherDW

WingfieldPT

Hoboken, NJ John Wiley & Sons, Inc

20. AokiK

PerlmanM

LimJM

CantuR

WellsL

2007 Dynamic developmental elaboration of N-linked glycan complexity in the Drosophila melanogaster embryo. J Biol Chem 282 9127 9142

21. EcheverriCJ

PerrimonN

2006 High-throughput RNAi screening in cultured cells: a user's guide. Nat Rev Genet 7 373 384

22. NaitoY

YamadaT

MatsumiyaT

Ui-TeiK

SaigoK

2005 dsCheck: highly sensitive off-target search software for double-stranded RNA-mediated RNA interference. Nucleic Acids Res 33 W589 591

23. DietzlG

ChenD

SchnorrerF

SuKC

BarinovaY

2007 A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448 151 156

24. KuhnU

WahleE

2004 Structure and function of poly(A) binding proteins. Biochim Biophys Acta 1678 67 84

25. CarmodySR

WenteSR

2009 mRNA nuclear export at a glance. J Cell Sci 122 1933 1937

26. CassoDJ

LiuS

IwakiDD

OgdenSK

KornbergTB

2008 A screen for modifiers of hedgehog signaling in Drosophila melanogaster identifies swm and mts. Genetics 178 1399 1413

27. StowersRS

SchwarzTL

1999 A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152 1631 1639

28. UiK

NishiharaS

SakumaM

TogashiS

UedaR

1994 Newly established cell lines from Drosophila larval CNS express neural specific characteristics. In Vitro Cell Dev Biol Anim 30A 209 216

29. HurtJA

ObarRA

ZhaiB

FarnyNG

GygiSP

2009 A conserved CCCH-type zinc finger protein regulates mRNA nuclear adenylation and export. J Cell Biol 185 265 277

30. BrownNH

1994 Null mutations in the alpha PS2 and beta PS integrin subunit genes have distinct phenotypes. Development 120 1221 1231

31. OlofssonB

PageDT

2005 Condensation of the central nervous system in embryonic Drosophila is inhibited by blocking hemocyte migration or neural activity. Dev Biol 279 233 243

32. RuaudAF

LamG

ThummelCS

2010 The Drosophila nuclear receptors DHR3 and betaFTZ-F1 control overlapping developmental responses in late embryos. Development 137 123 131

33. AshrafSI

GangulyA

RooteJ

IpYT

2004 Worniu, a Snail family zinc-finger protein, is required for brain development in Drosophila. Dev Dyn 231 379 386

34. LinYR

ReddyBV

IrvineKD

2008 Requirement for a core 1 galactosyltransferase in the Drosophila nervous system. Dev Dyn 237 3703 3714

35. RendicD

SharrowM

KatohT

OvercarshB

NguyenK

2010 Neural-specific {alpha}3-fucosylation of N-linked glycans in the Drosophila embryo requires Fucosyltransferase A and influences developmental signaling associated with O-glycosylation. Glycobiology

36. SunB

SalvaterraPM

1995 Characterization of nervana, a Drosophila melanogaster neuron-specific glycoprotein antigen recognized by anti-horseradish peroxidase antibodies. J Neurochem 65 434 443

37. SmithRD

LupashinVV

2008 Role of the conserved oligomeric Golgi (COG) complex in protein glycosylation. Carbohydr Res 343 2024 2031

38. LeonardR

RendicD

RabouilleC

WilsonIB

PreatT

2006 The Drosophila fused lobes gene encodes an N-acetylglucosaminidase involved in N-glycan processing. J Biol Chem 281 4867 4875

39. StrasserK

MasudaS

MasonP

PfannstielJ

OppizziM

2002 TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417 304 308

40. Pascual-GarciaP

Rodriguez-NavarroS

2009 A tale of coupling, Sus1 function in transcription and mRNA export. RNA Biol 6 141 144

41. GatfieldD

Le HirH

SchmittC

BraunIC

KocherT

2001 The DExH/D box protein HEL/UAP56 is essential for mRNA nuclear export in Drosophila. Curr Biol 11 1716 1721

42. ForlerD

RabutG

CiccarelliFD

HeroldA

KocherT

2004 RanBP2/Nup358 provides a major binding site for NXF1-p15 dimers at the nuclear pore complex and functions in nuclear mRNA export. Mol Cell Biol 24 1155 1167

43. FarnyNG

HurtJA

SilverPA

2008 Definition of global and transcript-specific mRNA export pathways in metazoans. Genes Dev 22 66 78

44. FreezeHH

2007 Congenital Disorders of Glycosylation: CDG-I, CDG-II, and beyond. Curr Mol Med 7 389 396

45. GongWJ

GolicKG

2003 Ends-out, or replacement, gene targeting in Drosophila. Proc Natl Acad Sci U S A 100 2556 2561

46. YanoH

Yamamoto-HinoM

AbeM

KuwaharaR

HaraguchiS

2005 Distinct functional units of the Golgi complex in Drosophila cells. Proc Natl Acad Sci U S A 102 13467 13472

47. HunterS

ApweilerR

AttwoodTK

BairochA

BatemanA

2009 InterPro: the integrative protein signature database. Nucleic Acids Res 37 D211 215

48. ThomasPD

CampbellMJ

KejariwalA

MiH

KarlakB

2003 PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13 2129 2141

49. YanoH

Yamamoto-HinoM

GotoS

2009 Spatial and temporal regulation of glycosylation during Drosophila eye development. Cell Tissue Res

50. NiranjanakumariS

LasdaE

BrazasR

Garcia-BlancoMA

2002 Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods 26 182 190

51. SallesFJ

StricklandS

1999 Analysis of poly(A) tail lengths by PCR: the PAT assay. Methods Mol Biol 118 441 448

52. JangBC

Munoz-NajarU

PaikJH

ClaffeyK

YoshidaM

2003 Leptomycin B, an inhibitor of the nuclear export receptor CRM1, inhibits COX-2 expression. J Biol Chem 278 2773 2776

53. BerglundAC

SjolundE

OstlundG

SonnhammerEL

2008 InParanoid 6: eukaryotic ortholog clusters with inparalogs. Nucleic Acids Res 36 D263 266

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#