#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Functional Comparison of Innate Immune Signaling Pathways in Primates


Humans respond differently than other primates to a large number of infections. Differences in susceptibility to infectious agents between humans and other primates are probably due to inter-species differences in immune response to infection. Consistent with that notion, genes involved in immunity-related processes are strongly enriched among recent targets of positive selection in primates, suggesting that immune responses evolve rapidly, yet providing only indirect evidence for possible inter-species functional differences. To directly compare immune responses among primates, we stimulated primary monocytes from humans, chimpanzees, and rhesus macaques with lipopolysaccharide (LPS) and studied the ensuing time-course regulatory responses. We find that, while the universal Toll-like receptor response is mostly conserved across primates, the regulatory response associated with viral infections is often lineage-specific, probably reflecting rapid host–virus mutual adaptation cycles. Additionally, human-specific immune responses are enriched for genes involved in apoptosis, as well as for genes associated with cancer and with susceptibility to infectious diseases or immune-related disorders. Finally, we find that chimpanzee-specific immune signaling pathways are enriched for HIV–interacting genes. Put together, our observations lend strong support to the notion that lineage-specific immune responses may help explain known inter-species differences in susceptibility to infectious diseases.


Vyšlo v časopise: Functional Comparison of Innate Immune Signaling Pathways in Primates. PLoS Genet 6(12): e32767. doi:10.1371/journal.pgen.1001249
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001249

Souhrn

Humans respond differently than other primates to a large number of infections. Differences in susceptibility to infectious agents between humans and other primates are probably due to inter-species differences in immune response to infection. Consistent with that notion, genes involved in immunity-related processes are strongly enriched among recent targets of positive selection in primates, suggesting that immune responses evolve rapidly, yet providing only indirect evidence for possible inter-species functional differences. To directly compare immune responses among primates, we stimulated primary monocytes from humans, chimpanzees, and rhesus macaques with lipopolysaccharide (LPS) and studied the ensuing time-course regulatory responses. We find that, while the universal Toll-like receptor response is mostly conserved across primates, the regulatory response associated with viral infections is often lineage-specific, probably reflecting rapid host–virus mutual adaptation cycles. Additionally, human-specific immune responses are enriched for genes involved in apoptosis, as well as for genes associated with cancer and with susceptibility to infectious diseases or immune-related disorders. Finally, we find that chimpanzee-specific immune signaling pathways are enriched for HIV–interacting genes. Put together, our observations lend strong support to the notion that lineage-specific immune responses may help explain known inter-species differences in susceptibility to infectious diseases.


Zdroje

1. VarkiA

2000 A chimpanzee genome project is a biomedical imperative. Genome Res 10 1065 1070

2. VarkiA

AltheideTK

2005 Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome Res 15 1746 1758

3. Chimpanzee Sequencing and Analysis Consortium 2005 Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437 69 87

4. BustamanteCD

Fledel-AlonA

WilliamsonS

NielsenR

HubiszMT

2005 Natural selection on protein-coding genes in the human genome. Nature 437 1153 1157

5. GibbsRA

RogersJ

KatzeMG

BumgarnerR

WeinstockGM

2007 Evolutionary and biomedical insights from the rhesus macaque genome. Science 316 222 234

6. KosiolC

VinarT

da FonsecaRR

HubiszMJ

BustamanteCD

2008 Patterns of positive selection in six Mammalian genomes. PLoS Genet 4 e1000144 doi:10.1371/journal.pgen.1000144

7. NielsenR

BustamanteC

ClarkAG

GlanowskiS

SacktonTB

2005 A Scan for Positively Selected Genes in the Genomes of Humans and Chimpanzees. PLoS Biol 3 e170 doi:10.1371/journal.pbio.0030170

8. ArbizaL

DopazoJ

DopazoH

2006 Positive selection, relaxation, and acceleration in the evolution of the human and chimp genome. PLoS Comput Biol 2 e38 doi:10.1371/journal.pcbi.0020038

9. VoightBF

KudaravalliS

WenX

PritchardJK

2006 A map of recent positive selection in the human genome. PLoS Biol 4 e72 doi:10.1371/journal.pbio.0040072

10. WangET

KodamaG

BaldiP

MoyzisRK

2006 Global landscape of recent inferred Darwinian selection for Homo sapiens. Proc Natl Acad Sci U S A 103 135 140

11. BarreiroLB

Quintana-MurciL

2010 From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat Rev Genet 11 17 30

12. HoffmannJA

KafatosFC

JanewayCA

EzekowitzRA

1999 Phylogenetic perspectives in innate immunity. Science 284 1313 1318

13. JanewayCAJr

MedzhitovR

2002 Innate immune recognition. Annu Rev Immunol 20 197 216

14. LitmanGW

CannonJP

DishawLJ

2005 Reconstructing immune phylogeny: new perspectives. Nat Rev Immunol 5 866 879

15. KimbrellDA

BeutlerB

2001 The evolution and genetics of innate immunity. Nat Rev Genet 2 256 267

16. MedzhitovR

2001 Toll-like receptors and innate immunity. Nat Rev Immunol 1 135 145

17. MedzhitovR

2007 Recognition of microorganisms and activation of the immune response. Nature 449 819 826

18. van DuinD

MedzhitovR

ShawAC

2006 Triggering TLR signaling in vaccination. Trends Immunol 27 49 55

19. KawaiT

AkiraS

2010 The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11 373 384

20. MedzhitovR

JanewayCAJr

2002 Decoding the patterns of self and nonself by the innate immune system. Science 296 298 300

21. AmitI

GarberM

ChevrierN

LeiteAP

DonnerY

2009 Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326 257 263

22. HuangQ

LiuD

MajewskiP

SchulteLC

KornJM

2001 The plasticity of dendritic cell responses to pathogens and their components. Science 294 870 875

23. NauGJ

RichmondJF

SchlesingerA

JenningsEG

LanderES

2002 Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci U S A 99 1503 1508

24. PoltorakA

HeX

SmirnovaI

LiuMY

Van HuffelC

1998 Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282 2085 2088

25. QureshiST

MedzhitovR

2003 Toll-like receptors and their role in experimental models of microbial infection. Genes Immun 4 87 94

26. WangT

TownT

AlexopoulouL

AndersonJF

FikrigE

2004 Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10 1366 1373

27. ElkonR

LinhartC

HalperinY

ShilohY

ShamirR

2007 Functional genomic delineation of TLR-induced transcriptional networks. BMC Genomics 8 394

28. JennerRG

YoungRA

2005 Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 3 281 294

29. Ricciardi-CastagnoliP

GranucciF

2002 Opinion: Interpretation of the complexity of innate immune responses by functional genomics. Nat Rev Immunol 2 881 889

30. BlekhmanR

OshlackA

ChabotAE

SmythGK

GiladY

2008 Gene regulation in primates evolves under tissue-specific selection pressures. PLoS Genet 4 e1000271 oi:10.1371/journal.pgen.1000271

31. JensenLJ

KuhnM

StarkM

ChaffronS

CreeveyC

2009 STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37 D412 416

32. WangZM

LiuC

DziarskiR

2000 Chemokines are the main proinflammatory mediators in human monocytes activated by Staphylococcus aureus, peptidoglycan, and endotoxin. J Biol Chem 275 20260 20267

33. PybusOG

RambautA

2009 Evolutionary analysis of the dynamics of viral infectious disease. Nat Rev Genet 10 540 550

34. HildemanD

JorgensenT

KapplerJ

MarrackP

2007 Apoptosis and the homeostatic control of immune responses. Curr Opin Immunol 19 516 521

35. da FonsecaRR

KosiolC

VinarT

SiepelA

NielsenR

2010 Positive selection on apoptosis related genes. FEBS Lett 584 469 476

36. BeniashviliDS

1989 An overview of the world literature on spontaneous tumors in nonhuman primates. J Med Primatol 18 423 437

37. McClureHM

1973 Tumors in nonhuman primates: observations during a six-year period in the Yerkes primate center colony. Am J Phys Anthropol 38 425 429

38. SeiboldHR

WolfRH

1973 Neoplasms and proliferative lesions in 1065 nonhuman primate necropsies. Lab Anim Sci 23 533 539

39. WatersDJ

SakrWA

HaydenDW

LangCM

McKinneyL

1998 Workgroup 4: spontaneous prostate carcinoma in dogs and nonhuman primates. Prostate 36 64 67

40. CotterTG

2009 Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9 501 507

41. ParkWS

LeeJH

ShinMS

ParkJY

KimHS

2002 Inactivating mutations of the caspase-10 gene in gastric cancer. Oncogene 21 2919 2925

42. ShinMS

KimHS

KangCS

ParkWS

KimSY

2002 Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas. Blood 99 4094 4099

43. FongPY

XueWC

NganHY

ChiuPM

ChanKY

2006 Caspase activity is downregulated in choriocarcinoma: a cDNA array differential expression study. J Clin Pathol 59 179 183

44. XuB

ZhouZG

LiY

WangL

YangL

2008 Clinicopathological significance of caspase-8 and caspase-10 expression in rectal cancer. Oncology 74 229 236

45. SharpPM

ShawGM

HahnBH

2005 Simian immunodeficiency virus infection of chimpanzees. J Virol 79 3891 3902

46. NovembreFJ

SaucierM

AndersonDC

KlumppSA

O'NeilSP

1997 Development of AIDS in a chimpanzee infected with human immunodeficiency virus type 1. J Virol 71 4086 4091

47. SilvestriG

2009 Immunity in natural SIV infections. J Intern Med 265 97 109

48. KeeleBF

JonesJH

TerioKA

EstesJD

RudicellRS

2009 Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature 460 515 519

49. BajtayZ

SpethC

ErdeiA

DierichMP

2004 Cutting edge: productive HIV-1 infection of dendritic cells via complement receptor type 3 (CR3, CD11b/CD18). J Immunol 173 4775 4778

50. BouhlalH

ChomontN

RequenaM

NasreddineN

SaidiH

2007 Opsonization of HIV with complement enhances infection of dendritic cells and viral transfer to CD4 T cells in a CR3 and DC-SIGN-dependent manner. J Immunol 178 1086 1095

51. MbisaJL

BuW

PathakVK

2010 APOBEC3F and APOBEC3G inhibit HIV-1 DNA integration by different mechanisms. J Virol 84 5250 5259

52. OrtizM

GuexN

PatinE

MartinO

XenariosI

2009 Evolutionary trajectories of primate genes involved in HIV pathogenesis. Mol Biol Evol 26 2865 2875

53. FeldmanAL

CostourosNG

WangE

QianM

MarincolaFM

2002 Advantages of mRNA amplification for microarray analysis. Biotechniques 33 906 912, 914

54. PolacekDC

PasseriniAG

ShiC

FrancescoNM

ManduchiE

2003 Fidelity and enhanced sensitivity of differential transcription profiles following linear amplification of nanogram amounts of endothelial mRNA. Physiol Genomics 13 147 156

55. Benjamini YHY

1995 Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society B 57 189 300

56. BackesC

KellerA

KuentzerJ

KneisslB

ComtesseN

2007 GeneTrail—advanced gene set enrichment analysis. Nucleic Acids Res 35 W186 192

57. UlitskyI

Maron-KatzA

ShavitS

SagirD

LinhartC

2010 Expander: from expression microarrays to networks and functions. Nat Protoc 5 303 322

58. StoneEA

AyrolesJF

2009 Modulated modularity clustering as an exploratory tool for functional genomic inference. PLoS Genet 5 e1000479 doi:10.1371/journal.pgen.1000479

59. FuW

Sanders-BeerBE

KatzKS

MaglottDR

PruittKD

2009 Human immunodeficiency virus type 1, human protein interaction database at NCBI. Nucleic Acids Res 37 D417 422

60. DongC

DavisRJ

FlavellRA

2002 MAP kinases in the immune response. Annu Rev Immunol 20 55 72

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#