Histone H2A C-Terminus Regulates Chromatin Dynamics, Remodeling, and Histone H1 Binding
The tails of histone proteins are central players for all chromatin-mediated processes. Whereas the N-terminal histone tails have been studied extensively, little is known about the function of the H2A C-terminus. Here, we show that the H2A C-terminal tail plays a pivotal role in regulating chromatin structure and dynamics. We find that cells expressing C-terminally truncated H2A show increased stress sensitivity. Moreover, both the complete and the partial deletion of the tail result in increased histone exchange kinetics and nucleosome mobility in vivo and in vitro. Importantly, our experiments reveal that the H2A C-terminus is required for efficient nucleosome translocation by ISWI-type chromatin remodelers and acts as a novel recognition module for linker histone H1. Thus, we suggest that the H2A C-terminal tail has a bipartite function: stabilisation of the nucleosomal core particle, as well as mediation of the protein interactions that control chromatin dynamics and conformation.
Vyšlo v časopise:
Histone H2A C-Terminus Regulates Chromatin Dynamics, Remodeling, and Histone H1 Binding. PLoS Genet 6(12): e32767. doi:10.1371/journal.pgen.1001234
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001234
Souhrn
The tails of histone proteins are central players for all chromatin-mediated processes. Whereas the N-terminal histone tails have been studied extensively, little is known about the function of the H2A C-terminus. Here, we show that the H2A C-terminal tail plays a pivotal role in regulating chromatin structure and dynamics. We find that cells expressing C-terminally truncated H2A show increased stress sensitivity. Moreover, both the complete and the partial deletion of the tail result in increased histone exchange kinetics and nucleosome mobility in vivo and in vitro. Importantly, our experiments reveal that the H2A C-terminus is required for efficient nucleosome translocation by ISWI-type chromatin remodelers and acts as a novel recognition module for linker histone H1. Thus, we suggest that the H2A C-terminal tail has a bipartite function: stabilisation of the nucleosomal core particle, as well as mediation of the protein interactions that control chromatin dynamics and conformation.
Zdroje
1. KhorasanizadehS
2004 The nucleosome: from genomic organization to genomic regulation. Cell 116 259 272
2. LugerK
MaderAW
RichmondRK
SargentDF
RichmondTJ
1997 Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389 251 260
3. KouzaridesT
2007 Chromatin modifications and their function. Cell 128 693 705
4. NarlikarGJ
FanHY
KingstonRE
2002 Cooperation between complexes that regulate chromatin structure and transcription. Cell 108 475 487
5. TsukudaT
FlemingAB
NickoloffJA
OsleyMA
2005 Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438 379 383
6. van AttikumH
GasserSM
2005 ATP-dependent chromatin remodeling and DNA double-strand break repair. Cell Cycle 4 1011 1014
7. GodfreyJE
EickbushTH
MoudrianakisEN
1980 Reversible association of calf thymus histones to form the symmetrical octamer (H2AH2BH3H4)2: a case of a mixed-associating system. Biochemistry 19 1339 1346
8. KimuraH
CookPR
2001 Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J Cell Biol 153 1341 1353
9. WoodcockCL
SkoultchiAI
FanY
2006 Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res 14 17 25
10. ZhouYB
GerchmanSE
RamakrishnanV
TraversA
MuyldermansS
1998 Position and orientation of the globular domain of linker histone H5 on the nucleosome. Nature 395 402 405
11. BharathMM
ChandraNR
RaoMR
2003 Molecular modeling of the chromatosome particle. Nucleic Acids Res 31 4264 4274
12. BrownDT
IzardT
MisteliT
2006 Mapping the interaction surface of linker histone H1(0) with the nucleosome of native chromatin in vivo. Nat Struct Mol Biol 13 250 255
13. FanL
RobertsVA
2006 Complex of linker histone H5 with the nucleosome and its implications for chromatin packing. Proc Natl Acad Sci U S A 103 8384 8389
14. SyedSH
Goutte-GattatD
BeckerN
MeyerS
ShuklaMS
2010 Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome. Proc Natl Acad Sci U S A 107 9620 9625
15. KepperN
FoethkeD
StehrR
WedemannG
RippeK
2008 Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation. Biophys J 95 3692 3705
16. LeeKM
HayesJJ
1998 Linker DNA and H1-dependent reorganization of histone-DNA interactions within the nucleosome. Biochemistry 37 8622 8628
17. MeshorerE
YellajoshulaD
GeorgeE
ScamblerPJ
BrownDT
2006 Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10 105 116
18. GoldbergAD
BanaszynskiLA
NohKM
LewisPW
ElsaesserSJ
2010 Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140 678 691
19. RaghuramN
CarreroG
Th'ngJ
HendzelMJ
2009 Molecular dynamics of histone H1. Biochem Cell Biol 87 189 206
20. DouY
BowenJ
LiuY
GorovskyMA
2002 Phosphorylation and an ATP-dependent process increase the dynamic exchange of H1 in chromatin. J Cell Biol 158 1161 1170
21. HigashiT
MatsunagaS
IsobeK
MorimotoA
ShimadaT
2007 Histone H2A mobility is regulated by its tails and acetylation of core histone tails. Biochem Biophys Res Commun 357 627 632
22. BoulardM
GautierT
MbeleGO
GersonV
HamicheA
2006 The NH2 tail of the novel histone variant H2BFWT exhibits properties distinct from conventional H2B with respect to the assembly of mitotic chromosomes. Mol Cell Biol 26 1518 1526
23. GrothA
CorpetA
CookAJ
RocheD
BartekJ
2007 Regulation of replication fork progression through histone supply and demand. Science 318 1928 1931
24. SzutsD
2004 Cell cycle arrest at the initiation step of human chromosomal DNA replication causes DNA damage. Journal of Cell Science 117 4897 4908
25. FerreiraH
SomersJ
WebsterR
FlausA
Owen-HughesT
2007 Histone tails and the H3 alphaN helix regulate nucleosome mobility and stability. Mol Cell Biol 27 4037 4048
26. DundrM
Hoffmann-RohrerU
HuQ
GrummtI
RothblumLI
2002 A kinetic framework for a mammalian RNA polymerase in vivo. Science 298 1623 1626
27. KandaT
SullivanKF
WahlGM
1998 Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 8 377 385
28. KappesF
BurgerK
BaackM
FackelmayerFO
GrussC
2001 Subcellular localization of the human proto-oncogene protein DEK. J Biol Chem 276 26317 26323
29. RoseSM
GarrardWT
1984 Differentiation-dependent chromatin alterations precede and accompany transcription of immunoglobulin light chain genes. J Biol Chem 259 8534 8544
30. FlausA
Owen-HughesT
2003 Dynamic properties of nucleosomes during thermal and ATP-driven mobilization. Mol Cell Biol 23 7767 7779
31. FlausA
RichmondTJ
1998 Positioning and stability of nucleosomes on MMTV 3'LTR sequences. Journal of Molecular Biology 275 427 441
32. MeerssemanG
PenningsS
BradburyEM
1992 Mobile nucleosomes–a general behavior. Embo J 11 2951 2959
33. HamicheA
SandaltzopoulosR
GdulaDA
WuC
1999 ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97 833 842
34. LängstG
BeckerPB
2001 ISWI induces nucleosome sliding on nicked DNA. Molecular Cell 8 1085 1092
35. StrohnerR
WachsmuthM
DachauerK
MazurkiewiczJ
HochstatterJ
2005 A ‘loop recapture’ mechanism for ACF-dependent nucleosome remodeling. Nat Struct Mol Biol 12 683 690
36. RippeK
SchraderA
RiedeP
StrohnerR
LehmannE
2007 DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes. Proc Natl Acad Sci U S A 104 15635 15640
37. EberharterA
VetterI
FerreiraR
BeckerPB
2004 ACF1 improves the effectiveness of nucleosome mobilization by ISWI through PHD-histone contacts. Embo J 23 4029 4039
38. ThastromA
LowaryPT
WidlundHR
CaoH
KubistaM
1999 Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. J Mol Biol 288 213 229
39. FinkM
ImholzD
ThomaF
2007 Contribution of the serine 129 of histone H2A to chromatin structure. Mol Cell Biol 27 3589 3600
40. KruhlakMJ
CelesteA
DellaireG
Fernandez-CapetilloO
MullerWG
2006 Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J Cell Biol 172 823 834
41. LiJ
LangstG
GrummtI
2006 NoRC-dependent nucleosome positioning silences rRNA genes. Embo J 25 5735 5741
42. ZhangZ
ReeseJC
2004 Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae. Embo J 23 2246 2257
43. ParnellTJ
HuffJT
CairnsBR
2008 RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. Embo J 27 100 110
44. KaraczynAA
ChengRYS
BuzardGS
HartleyJ
EspositoD
2009 Truncation of histone H2A's C-terminal tail, as is typical for Ni(II)-assisted specific peptide bond hydrolysis, has gene expression altering effects. Ann Clin Lab Sci 39 251 262
45. KimK
ChoiJ
HeoK
KimH
LevensD
2008 Isolation and characterization of a novel H1.2 complex that acts as a repressor of p53-mediated transcription. J Biol Chem 283 9113 9126
46. WolffeAP
1998 Chromatin Structure and Function: Academic Press
47. LugerK
RechsteinerTJ
RichmondTJ
1999 Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol Biol 119 1 16
48. LängstG
BonteEJ
CoronaDF
BeckerPB
1999 Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97 843 852
49. BrehmA
LängstG
KehleJ
ClapierCR
ImhofA
2000 dMi-2 and ISWI chromatin remodelling factors have distinct nucleosome binding and mobilization properties. EMBO J 19 4332 4341
50. FlausA
Owen-HughesT
2003 Mechanisms for nucleosome mobilization. Biopolymers 68 563 578
51. FrankenNA
RodermondHM
StapJ
HavemanJ
van BreeC
2006 Clonogenic assay of cells in vitro. Nat Protoc 1 2315 2319
52. DaujatS
ZeisslerU
WaldmannT
HappelN
SchneiderR
2005 HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding. J Biol Chem 280 38090 38095
53. O'NeillLP
KeohaneAM
LavenderJS
McCabeV
HeardE
1999 A developmental switch in H4 acetylation upstream of Xist plays a role in X chromosome inactivation. Embo J 18 2897 2907
54. HeoK
KimB
KimK
ChoiJ
KimH
2007 Isolation and characterization of proteins associated with histone H3 tails in vivo. J Biol Chem 282 15476 15483
55. LowaryPT
WidomJ
1998 New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276 19 42
56. PhillipsJC
BraunR
WangW
GumbartJ
TajkhorshidE
2005 Scalable molecular dynamics with NAMD. J Comput Chem 26 1781 1802
57. SchalchT
DudaS
SargentDF
RichmondTJ
2005 X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436 138 141
58. DaveyCA
SargentDF
LugerK
MaederAW
RichmondTJ
2002 Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J Mol Biol 319 1097 1113
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 12
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Functional Comparison of Innate Immune Signaling Pathways in Primates
- Expression of Linear and Novel Circular Forms of an -Associated Non-Coding RNA Correlates with Atherosclerosis Risk
- Genome-Wide Interrogation of Mammalian Stem Cell Fate Determinants by Nested Chromosome Deletions
- Histone H2A C-Terminus Regulates Chromatin Dynamics, Remodeling, and Histone H1 Binding