A Global Overview of the Genetic and Functional Diversity in the Pathogenicity Island
The Helicobacter pylori cag pathogenicity island (cagPAI) encodes a type IV secretion system. Humans infected with cagPAI–carrying H. pylori are at increased risk for sequelae such as gastric cancer. Housekeeping genes in H. pylori show considerable genetic diversity; but the diversity of virulence factors such as the cagPAI, which transports the bacterial oncogene CagA into host cells, has not been systematically investigated. Here we compared the complete cagPAI sequences for 38 representative isolates from all known H. pylori biogeographic populations. Their gene content and gene order were highly conserved. The phylogeny of most cagPAI genes was similar to that of housekeeping genes, indicating that the cagPAI was probably acquired only once by H. pylori, and its genetic diversity reflects the isolation by distance that has shaped this bacterial species since modern humans migrated out of Africa. Most isolates induced IL-8 release in gastric epithelial cells, indicating that the function of the Cag secretion system has been conserved despite some genetic rearrangements. More than one third of cagPAI genes, in particular those encoding cell-surface exposed proteins, showed signatures of diversifying (Darwinian) selection at more than 5% of codons. Several unknown gene products predicted to be under Darwinian selection are also likely to be secreted proteins (e.g. HP0522, HP0535). One of these, HP0535, is predicted to code for either a new secreted candidate effector protein or a protein which interacts with CagA because it contains two genetic lineages, similar to cagA. Our study provides a resource that can guide future research on the biological roles and host interactions of cagPAI proteins, including several whose function is still unknown.
Vyšlo v časopise:
A Global Overview of the Genetic and Functional Diversity in the Pathogenicity Island. PLoS Genet 6(8): e32767. doi:10.1371/journal.pgen.1001069
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001069
Souhrn
The Helicobacter pylori cag pathogenicity island (cagPAI) encodes a type IV secretion system. Humans infected with cagPAI–carrying H. pylori are at increased risk for sequelae such as gastric cancer. Housekeeping genes in H. pylori show considerable genetic diversity; but the diversity of virulence factors such as the cagPAI, which transports the bacterial oncogene CagA into host cells, has not been systematically investigated. Here we compared the complete cagPAI sequences for 38 representative isolates from all known H. pylori biogeographic populations. Their gene content and gene order were highly conserved. The phylogeny of most cagPAI genes was similar to that of housekeeping genes, indicating that the cagPAI was probably acquired only once by H. pylori, and its genetic diversity reflects the isolation by distance that has shaped this bacterial species since modern humans migrated out of Africa. Most isolates induced IL-8 release in gastric epithelial cells, indicating that the function of the Cag secretion system has been conserved despite some genetic rearrangements. More than one third of cagPAI genes, in particular those encoding cell-surface exposed proteins, showed signatures of diversifying (Darwinian) selection at more than 5% of codons. Several unknown gene products predicted to be under Darwinian selection are also likely to be secreted proteins (e.g. HP0522, HP0535). One of these, HP0535, is predicted to code for either a new secreted candidate effector protein or a protein which interacts with CagA because it contains two genetic lineages, similar to cagA. Our study provides a resource that can guide future research on the biological roles and host interactions of cagPAI proteins, including several whose function is still unknown.
Zdroje
1. SuerbaumS
MichettiP
2002 Helicobacter pylori infection. N Engl J Med 347 1175 1186
2. CensiniS
LangeC
XiangZ
CrabtreeJE
GhiaraP
1996 cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A 93 14648 14653
3. FischerW
PulsJ
BuhrdorfR
GebertB
OdenbreitS
2001 Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol 42 1337 1348
4. WiedemannT
LoellE
MuellerS
StoeckelhuberM
StolteM
2009 Helicobacter pylori cag-Pathogenicity island-dependent early immunological response triggers later precancerous gastric changes in Mongolian gerbils. PLoS ONE 4 e4754 doi:10.1371/journal.pone.0004754
5. FigueiredoC
MachadoJC
PharoahP
SerucaR
SousaS
2002 Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma. J Natl Cancer Inst 94 1680 1687
6. AmievaMR
El OmarEM
2008 Host-bacterial interactions in Helicobacter pylori infection. Gastroenterology 134 306 323
7. HatakeyamaM
2008 SagA of CagA in Helicobacter pylori pathogenesis. Curr Opin Microbiol 11 30 37
8. HatakeyamaM
2009 Helicobacter pylori and gastric carcinogenesis. J Gastroenterol 44 239 248
9. LuHS
SaitoY
UmedaM
Murata-KamiyaN
ZhangHM
2008 Structural and functional diversity in the PAR1b/MARK2-binding region of Helicobacter pylori CagA. Cancer Sci 99 2004 2011
10. PeekRMJr
CrabtreeJE
2006 Helicobacter infection and gastric neoplasia. J Pathol 208 233 248
11. OhnishiN
YuasaH
TanakaS
SawaH
MiuraM
2008 Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci U S A 105 1003 1008
12. BjorkholmB
SjolundM
FalkPG
BergOG
EngstrandL
2001 Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc Natl Acad Sci U S A 98 14607 14612
13. SuerbaumS
Maynard SmithJ
BapumiaK
MorelliG
SmithNH
1998 Free recombination within Helicobacter pylori. Proc Natl Acad Sci U S A 95 12619 12624
14. FalushD
WirthT
LinzB
PritchardJK
StephensM
2003 Traces of human migrations in Helicobacter pylori populations. Science 299 1582 1585
15. MoodleyY
LinzB
YamaokaY
WindsorHM
BreurecS
2009 The peopling of the Pacific from a bacterial perspective. Science 323 527 530
16. LinzB
BallouxF
MoodleyY
HuaL
ManicaA
2007 An African origin for the intimate association between humans and Helicobacter pylori. Nature 445 915 918
17. GressmannH
LinzB
GhaiR
PleissnerK-P
SchlapbachR
2005 Gain and loss of multiple genes during the evolution of Helicobacter pylori. PLoS Genet 1 e43 doi:10.1371/journal.pgen.0010043
18. TombJ-F
WhiteO
KerlavageAR
ClaytonRA
SuttonGG
1997 The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388 539 547
19. AzumaT
YamakawaA
YamazakiS
OhtaniM
ItoY
2004 Distinct diversity of the cag pathogenicity island among Helicobacter pylori strains in Japan. J Clin Microbiol 42 2508 2517
20. BlomstergrenA
LundinA
NilssonC
EngstrandL
LundebergJ
2004 Comparative analysis of the complete cag pathogenicity island sequence in four Helicobacter pylori isolates. Gene 328 85 93
21. OhJD
Kling-BackhedH
GiannakisM
XuJ
FultonRS
2006 The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc Natl Acad Sci U S A 103 9999 10004
22. AlmRA
LingL-SL
MoirDT
KingBL
BrownED
1999 Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397 176 180
23. ShimoyamaT
CrabtreeJE
1997 Mucosal chemokines in Helicobacter pylori infection. J Physiol Pharmacol 48 315 323
24. KimuraM
1991 The neutral theory of molecular evolution: a review of recent evidence. Jpn J Genet 66 367 386
25. MULLERHJ
1964 THE RELATION OF RECOMBINATION TO MUTATIONAL ADVANCE. Mutat Res 106 2 9: 2-9
26. KersulyteD
KaliaA
ZhangM
LeeHK
SubramaniamD
2004 Sequence organization and insertion specificity of the novel chimeric ISHp609 transposable element of Helicobacter pylori. J Bacteriol 186 7521 7528
27. KersulyteD
AkopyantsNS
CliftonSW
RoeBA
BergDE
1998 Novel sequence organization and insertion specificity of IS605 and IS606: chimaeric transposable elements of helicobacter pylori [In Process Citation]. Gene 223 175 186
28. AkopyantsNS
CliftonSW
KersulyteD
CrabtreeJE
YoureeBE
1998 Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol 28 37 53
29. OhtaT
2002 Near-neutrality in evolution of genes and gene regulation. Proc Natl Acad Sci U S A 99 16134 16137
30. SchwarzS
MorelliG
KusecekB
ManicaA
BallouxF
2008 Horizontal versus familial transmission of Helicobacter pylori. PLoS Pathog 4 e1000180 doi:10.1371/journal.ppat.1000180
31. YangZ
1997 PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13 555 556
32. WilsonDJ
McVeanG
2006 Estimating diversifying selection and functional constraint in the presence of recombination. Genetics 172 1411 1425
33. MuzziA
MoschioniM
CovacciA
RappuoliR
DonatiC
2008 Pilus operon evolution in Streptococcus pneumoniae is driven by positive selection and recombination. PLoS ONE 3 e3660 doi:10.1371/journal.pone.0003660
34. ZhongQ
ShaoS
MuR
WangH
HuangS
2010 Characterization of peptidoglycan hydrolase in Cag pathogenicity island of Helicobacter pylori. Mol Biol Rep
35. ArasRA
FischerW
Perez-PerezGI
CrosattiM
AndoT
2003 Plasticity of repetitive DNA sequences within a bacterial (Type IV) secretion system component. J Exp Med 198 1349 1360
36. RohdeM
PulsJ
BuhrdorfR
FischerW
HaasR
2003 A novel sheathed surface organelle of the Helicobacter pylori cag type IV secretion system. Mol Microbiol 49 219 234
37. KwokT
ZablerD
UrmanS
RohdeM
HartigR
2007 Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449 862 866
38. AndrzejewskaJ
LeeSK
OlbermannP
LotzingN
KatzowitschE
2006 Characterization of the pilin ortholog of the Helicobacter pylori type IV cag pathogenicity apparatus, a surface-associated protein expressed during infection. J Bacteriol 188 5865 5877
39. HatakeyamaM
2004 Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer 4 688 694
40. AhmedN
DobrindtU
HackerJ
HasnainSE
2008 Genomic fluidity and pathogenic bacteria: applications in diagnostics, epidemiology and intervention. Nat Rev Microbiol 6 387 394
41. EppingerM
BaarC
LinzB
RaddatzG
LanzC
2006 Who ate whom? Adaptive Helicobacter genomic changes that accompanied a host jump from early humans to large felines. PLoS Genet 2 e120 doi:10.1371/journal.pgen.0020120
42. Jimenez-SotoLF
KutterS
SewaldX
ErtlC
WeissE
2009 Helicobacter pylori type IV secretion apparatus exploits beta1 integrin in a novel RGD-independent manner. PLoS Pathog 5 e1000684 doi:10.1371/journal.ppat.1000684
43. SuerbaumS
JosenhansC
2007 Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat Rev Microbiol 5 441 452
44. NesicD
MillerMC
QuinkertZT
SteinM
ChaitBT
2010 Helicobacter pylori CagA inhibits PAR1-MARK family kinases by mimicking host substrates. Nat Struct Mol Biol 17 130 132
45. Reyes-LeonA
AthertonJC
ArgentRH
PuenteJL
TorresJ
2007 Heterogeneity in the activity of Mexican Helicobacter pylori strains in gastric epithelial cells and its association with diversity in the cagA gene. Infect Immun 75 3445 3454
46. MatteoMJ
GranadosG
PerezCV
OlmosM
SanchezC
2007 Helicobacter pylori cag pathogenicity island genotype diversity within the gastric niche of a single host. J Med Microbiol 56 664 669
47. MediniD
CovacciA
DonatiC
2006 Protein homology network families reveal step-wise diversification of Type III and Type IV secretion systems. PLoS Comput Biol 2 e173 doi:10.1371/journal.pcbi.0020173
48. BackertS
FronzesR
WaksmanG
2008 VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? Trends Microbiol 16 409 413
49. Pinto-SantiniDM
SalamaNR
2009 Cag3 is a novel essential component of the Helicobacter pylori Cag type IV secretion system outer membrane subcomplex. J Bacteriol 191 7343 7352
50. KutterS
BuhrdorfR
HaasJ
Schneider-BrachertW
HaasR
2008 Protein subassemblies of the Helicobacter pylori Cag type IV secretion system revealed by localization and interaction studies. J Bacteriol 190 2161 2171
51. BourzacKM
SatkampLA
GuilleminK
2006 The Helicobacter pylori cag pathogenicity island protein CagN is a bacterial membrane-associated protein that is processed at its C terminus. Infect Immun 74 2537 2543
52. PattisI
WeissE
LaugksR
HaasR
FischerW
2007 The Helicobacter pylori CagF protein is a type IV secretion chaperone-like molecule that binds close to the C-terminal secretion signal of the CagA effector protein. Microbiology 153 2896 2909
53. BastollaU
PortoM
Eduardo RomanMH
VendruscoloMH
2003 Connectivity of neutral networks, overdispersion, and structural conservation in protein evolution. J Mol Evol 56 243 254
54. NoirelJ
SimonsonT
2008 Neutral evolution of proteins: The superfunnel in sequence space and its relation to mutational robustness. J Chem Phys 129 185104
55. AchtmanM
AzumaT
BergDE
ItoY
MorelliG
1999 Recombination and clonal groupings within Helicobacter pylori from different geographic regions. Mol Microbiol 32 459 470
56. KumarS
NeiM
DudleyJ
TamuraK
2008 MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9 299 306
57. ExcoffierL
LavalG
SchneiderS
2005 Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinform Online 1 47 50: 47-50
58. RozasJ
RozasR
1999 DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15 174 175
59. YangZ
2007 PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24 1586 1591
60. JosenhansC
EatonKA
ThevenotT
SuerbaumS
2000 Switching of flagellar motility in Helicobacter pylori by reversible length variation of a short homopolymeric sequence repeat in fliP, a gene encoding a basal body protein. Infect Immun 68 4598 4603
61. CouturierMR
TascaE
MontecuccoC
SteinM
2006 Interaction with CagF is required for translocation of CagA into the host via the Helicobacter pylori type IV secretion system. Infect Immun 74 273 281
62. BuslerVJ
TorresVJ
McClainMS
TiradoO
FriedmanDB
2006 Protein-protein interactions among Helicobacter pylori cag proteins. J Bacteriol 188 4787 4800
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 8
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Identification of the Bovine Arachnomelia Mutation by Massively Parallel Sequencing Implicates Sulfite Oxidase (SUOX) in Bone Development
- Common Inherited Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits
- A Model for Damage Load and Its Implications for the Evolution of Bacterial Aging
- Did Genetic Drift Drive Increases in Genome Complexity?