#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Extinction Dynamics of Bacterial Pseudogenes


Pseudogenes are usually considered to be completely neutral sequences whose evolution is shaped by random mutations and chance events. It is possible, however, for disrupted genes to generate products that are deleterious due either to the energetic costs of their transcription and translation or to the formation of toxic proteins. We found that after their initial formation, the youngest pseudogenes in Salmonella genomes have a very high likelihood of being removed by deletional processes and are eliminated too rapidly to be governed by a strictly neutral model of stochastic loss. Those few highly degraded pseudogenes that have persisted in Salmonella genomes correspond to genes with low expression levels and low connectivity in gene networks, such that their inactivation and any initial deleterious effects associated with their inactivation are buffered. Although pseudogenes have long been considered the paradigm of neutral evolution, the distribution of pseudogenes among Salmonella strains indicates that removal of many of these apparently functionless regions is attributable to positive selection.


Vyšlo v časopise: The Extinction Dynamics of Bacterial Pseudogenes. PLoS Genet 6(8): e32767. doi:10.1371/journal.pgen.1001050
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001050

Souhrn

Pseudogenes are usually considered to be completely neutral sequences whose evolution is shaped by random mutations and chance events. It is possible, however, for disrupted genes to generate products that are deleterious due either to the energetic costs of their transcription and translation or to the formation of toxic proteins. We found that after their initial formation, the youngest pseudogenes in Salmonella genomes have a very high likelihood of being removed by deletional processes and are eliminated too rapidly to be governed by a strictly neutral model of stochastic loss. Those few highly degraded pseudogenes that have persisted in Salmonella genomes correspond to genes with low expression levels and low connectivity in gene networks, such that their inactivation and any initial deleterious effects associated with their inactivation are buffered. Although pseudogenes have long been considered the paradigm of neutral evolution, the distribution of pseudogenes among Salmonella strains indicates that removal of many of these apparently functionless regions is attributable to positive selection.


Zdroje

1. KuoCH

MoranNA

OchmanH

2009 The consequences of genetic drift for bacterial genome complexity. Genome Res 19 1450 1454

2. GregoryTR

2005 Synergy between sequence and size in large-scale genomics. Nat Genet 6 699 708

3. LawrenceJG

HendrixRW

CasjensS

2001 Where are the pseudogenes in bacterial genomes? Trends Microbiol 9 535 540

4. AnderssonJO

AnderssonSGE

2001 Pseudogenes, junk DNA, and the dynamics of Rickettsia genomes. Mol Biol Evol 18 829 839

5. LiuY

HarrisonPM

KuninV

GersteinM

2004 Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes. Genome Biol 5 R64

6. LeratE

OchmanH

2004 Psi-Phi: exploring the outer limits of bacterial pseudogenes. Genome Res 14 2273 2278

7. LeratE

OchmanH

2005 Recognizing the pseudogenes in bacterial genomes. Nucl Acids Res 33 3125 3132

8. KarroJE

YanY

ZhengD

ZhengZ

CarrieroN

2007 Pseudogene.org: a comprehensive database and comparison platform for pseudogene annotation. Nucl Acids Res 37 D55 60

9. AnderssonSG

ZomorodipourA

AnderssonJO

Sicheritz-PonténT

AlsmarkUC

1998 The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396 133 140

10. ChoNH

KimHR

LeeJH

KimSY

KimJ

2007 The Orientia tsutsugamushi genome reveals massive proliferation of conjugative type IV secretion system and host-cell interaction genes. Proc Natl Acad Sci U S A 104 7981 7986

11. ColeST

EiglmeierK

ParkhillJ

JamesKD

ThomsonNR

2001 Massive gene decay in the leprosy bacillus. Nature 409 1007 1011

12. TohH

WeissBL

PerkinSA

YamashitaA

OshimaK

2006 Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res 16 149 156

13. van PasselMW

MarriPR

OchmanH

2008 The emergence and fate of horizontally acquired genes in Escherichia coli. PLoS Comput Biol 4 e1000059 doi:10.1371/journal.pcbi.1000059

14. GraurD

ShualiY

LiWH

1989 Deletions in processed pseudogenes accumulate faster in rodents than in humans. J Mol Evol 28 279 285

15. ZhangZ

CarrieroN

GersteinM

2004 Comparative analysis of processed pseudogenes in the mouse and human genomes. Trends Genet 20 62 67

16. LamHYK

KhuranaE

FangG

CaytingP

CarrieroN

2009 Pseudofam: the pseudogene families database. Nucl Acids Res 37 D738 743

17. LiuYJ

ZhengD

BalasubramanianS

CarrieroN

KhuranaE

2009 Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates: the anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity. BMC Genomics 10 480

18. MiraA

OchmanH

MoranNA

2001 Deletional bias and the evolution of bacterial genomes. Trends Genet 17 589 596

19. KuoCH

OchmanH

2009 Deletional bias across the three domains of life. Genome Biol Evol 2009 145 152

20. LiWH

GojoboriT

NeiM

1981 Pseudogenes as a paradigm of neutral evolution. Nature 292 237 239

21. McClellandM

SandersonKE

SpiethJ

CliftonSW

LatreilleP

2001 Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413 852 856

22. ParkhillJ

DouganG

JamesKD

ThomsonNR

PickardD

2001 Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413 848 852

23. BeltranP

MusserJM

HelmuthR

FarmerJJ

FrerichsWM

1988 Toward a population genetic analysis of Salmonella: genetic diversity and relationships among strains of serotypes S. choleraesuis, S. derby, S. dublin, S. enteritidis, S. heidelberg, S. infantis, S. newport, and S. typhimurium. Proc Natl Acad Sci U S A 85 7753 7757

24. NilssonA

KoskiniemiS

ErikssonS

KugelbergE

HintonJCD

2005 Bacterial genome size reduction by experimental evolution. Proc Natl Acad Sci U S A 102 12112 12116

25. McClellandM

SandersonKE

CliftonSW

LatreilleP

PorwollikS

2004 Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet 36 1268 1274

26. VernikosGS

ThomsonNR

ParkhillJ

2007 Genetic flux over time in the Salmonella lineage. Genome Biol 8 R100

27. HoltKE

ThomsonNR

WainJ

LangridgeGC

HasanR

2009 Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi. BMC Genomics 10 36

28. LynchM

2006 Streamlining and simplification of microbial genome architecture. Annu Rev Microbiol 60 327 349

29. LynchM

ConeryJS

2003 The origins of genome complexity. Science 302 1401 1404

30. RochaEP

2004 Codon usage bias from tRNA's point of view: redundancy, specialization, and efficient decoding for translation optimization. Genome Res 14 2279 2286

31. RochaEP

DanchinA

2004 An analysis of determinants of amino acids substitution rates in bacterial proteins. Mol Biol Evol 21 108 116

32. CouturierE

RochaEP

2006 Replication-associated gene dosage effects shape the genomes of fast-growing bacteria but only for transcription and translation genes. Mol Microbiol 59 1506 1518

33. van PasselMWJ

SmillieCS

OchmanH

2007 Gene decay in Archaea. Archaea 2 137 142

34. SelingerDW

CheungKJ

MeiR

JohanssonEM

RichmondCS

BlattnerFR

LockhartDJ

ChurchGM

2000 RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nature Biotech 18 1262 1268

35. DornenburgJE

DeVitaAM

AlumboMJ

WadeJT

2010 Widespread antisense transcription in Escherichia coli. mBio 1 e00024 10

36. GüellM

van NoortV

YusE

ChenWH

Leigh-BellJ

2009 Transcriptome complexity in a genome-reduced bacterium. Science 326 1268 1271

37. HautefortI

ThompsonA

Eriksson-YgbergS

ParkerML

LucchiniS

2008 during infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cellular Microbiology 10 958 984

38. PerkinsTT

KingsleyRA

FookesMC

GardnerPP

JamesKD

2009 A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi. PLoS Genetics 5 e1000569 doi:10.1371/journal.pgen.1000569

39. Castillo-DavisC

MekhedovSL

HartlDL

KooninEV

KondrashovFA

2002 Selection for short introns in highly expressed genes. Nat Genet 31 415 418

40. BensonDA

Karsch-MizrachiI

LipmanDJ

OstellJ

WheelerDL

2008 GenBank. Nucl Acids Res 36 D25 30

41. AltschulSF

GishW

MillerW

MyersEW

LipmanDJ

1990 Basic local alignment search tool. J Mol Biol 215 403 410

42. StajichJE

BlockD

BoulezK

BrennerSE

ChervitzSA

2002 The Bioperl toolkit: Perl modules for the life sciences. Genome Res 12 1611 1618

43. LiL

StoeckertCJ

RoosDS

2003 OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13 2178 2189

44. HulsenT

HuynenM

de VliegJ

GroenenP

2006 Benchmarking ortholog identification methods using functional genomics data. Genome Biol 7 R31

45. EdgarRC

2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32 1792 1797

46. SchmidtHA

StrimmerK

VingronM

von HaeselerA

2002 TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18 502 504

47. NovichkovPS

WolfYI

DubchakI

KooninEV

2009 Trends in prokaryotic evolution revealed by comparison of closely related bacterial and archaeal genomes. J Bacteriol 191 65 73

48. SuyamaM

TorrentsD

BorkP

2006 PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucl Acids Res 34 W609 612

49. YangZ

NielsenR

2000 Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17 32 43

50. YangZ

2007 PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24 1586 1591

51. ButlandG

Peregrín-AlvarezJM

LiJ

YangW

YangX

2005 Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433 531 537

52. HuP

JangaSC

BabuM

Díaz-MejíaJJ

ButlandG

2009 Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol 28 e96 doi:10.1371/journal.pbio.1000096

53. SuC

Peregrin-AlvarezJM

ButlandG

PhanseS

FongV

2008 Bacteriome.org–an integrated protein interaction database for E. coli. Nucl Acids Res 36 D632 636

54. Peregrín-AlvarezJM

XiongX

SuC

ParkinsonJ

2009 The modular organization of protein interactions in Escherichia coli. PLoS Comput Biol 5 e1000523 doi:10.1371/journal.pcbi.1000523

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#