#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Common Inherited Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits


Mitochondrial dysfunction has been observed in skeletal muscle of people with diabetes and insulin-resistant individuals. Furthermore, inherited mutations in mitochondrial DNA can cause a rare form of diabetes. However, it is unclear whether mitochondrial dysfunction is a primary cause of the common form of diabetes. To date, common genetic variants robustly associated with type 2 diabetes (T2D) are not known to affect mitochondrial function. One possibility is that multiple mitochondrial genes contain modest genetic effects that collectively influence T2D risk. To test this hypothesis we developed a method named Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA; http://www.broadinstitute.org/mpg/magenta). MAGENTA, in analogy to Gene Set Enrichment Analysis, tests whether sets of functionally related genes are enriched for associations with a polygenic disease or trait. MAGENTA was specifically designed to exploit the statistical power of large genome-wide association (GWA) study meta-analyses whose individual genotypes are not available. This is achieved by combining variant association p-values into gene scores and then correcting for confounders, such as gene size, variant number, and linkage disequilibrium properties. Using simulations, we determined the range of parameters for which MAGENTA can detect associations likely missed by single-marker analysis. We verified MAGENTA's performance on empirical data by identifying known relevant pathways in lipid and lipoprotein GWA meta-analyses. We then tested our mitochondrial hypothesis by applying MAGENTA to three gene sets: nuclear regulators of mitochondrial genes, oxidative phosphorylation genes, and ∼1,000 nuclear-encoded mitochondrial genes. The analysis was performed using the most recent T2D GWA meta-analysis of 47,117 people and meta-analyses of seven diabetes-related glycemic traits (up to 46,186 non-diabetic individuals). This well-powered analysis found no significant enrichment of associations to T2D or any of the glycemic traits in any of the gene sets tested. These results suggest that common variants affecting nuclear-encoded mitochondrial genes have at most a small genetic contribution to T2D susceptibility.


Vyšlo v časopise: Common Inherited Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits. PLoS Genet 6(8): e32767. doi:10.1371/journal.pgen.1001058
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001058

Souhrn

Mitochondrial dysfunction has been observed in skeletal muscle of people with diabetes and insulin-resistant individuals. Furthermore, inherited mutations in mitochondrial DNA can cause a rare form of diabetes. However, it is unclear whether mitochondrial dysfunction is a primary cause of the common form of diabetes. To date, common genetic variants robustly associated with type 2 diabetes (T2D) are not known to affect mitochondrial function. One possibility is that multiple mitochondrial genes contain modest genetic effects that collectively influence T2D risk. To test this hypothesis we developed a method named Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA; http://www.broadinstitute.org/mpg/magenta). MAGENTA, in analogy to Gene Set Enrichment Analysis, tests whether sets of functionally related genes are enriched for associations with a polygenic disease or trait. MAGENTA was specifically designed to exploit the statistical power of large genome-wide association (GWA) study meta-analyses whose individual genotypes are not available. This is achieved by combining variant association p-values into gene scores and then correcting for confounders, such as gene size, variant number, and linkage disequilibrium properties. Using simulations, we determined the range of parameters for which MAGENTA can detect associations likely missed by single-marker analysis. We verified MAGENTA's performance on empirical data by identifying known relevant pathways in lipid and lipoprotein GWA meta-analyses. We then tested our mitochondrial hypothesis by applying MAGENTA to three gene sets: nuclear regulators of mitochondrial genes, oxidative phosphorylation genes, and ∼1,000 nuclear-encoded mitochondrial genes. The analysis was performed using the most recent T2D GWA meta-analysis of 47,117 people and meta-analyses of seven diabetes-related glycemic traits (up to 46,186 non-diabetic individuals). This well-powered analysis found no significant enrichment of associations to T2D or any of the glycemic traits in any of the gene sets tested. These results suggest that common variants affecting nuclear-encoded mitochondrial genes have at most a small genetic contribution to T2D susceptibility.


Zdroje

1. LowellBB

ShulmanGI

2005 Mitochondrial dysfunction and type 2 diabetes. Science 307 384 387 doi:10.1126/science.1104343

2. DumasJ

SimardG

FlammentM

DucluzeauP

RitzP

2009 Is skeletal muscle mitochondrial dysfunction a cause or an indirect consequence of insulin resistance in humans? Diabetes Metab 35 159 167 doi:10.1016/j.diabet.2009.02.002

3. TaylorRW

TurnbullDM

2005 Mitochondrial DNA mutations in human disease. Nat Rev Genet 6 389 402 doi:10.1038/nrg1606

4. JinW

PattiM

2009 Genetic determinants and molecular pathways in the pathogenesis of Type 2 diabetes. Clin Sci 116 99 111 doi:10.1042/CS20080090

5. KelleyDE

HeJ

MenshikovaEV

RitovVB

2002 Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51 2944 2950

6. ChoYM

ParkKS

LeeHK

2007 Genetic factors related to mitochondrial function and risk of diabetes mellitus. Diabetes Res Clin Pract 77 Suppl 1 S172 177 doi:10.1016/j.diabres.2007.01.052

7. TurnerN

HeilbronnLK

2008 Is mitochondrial dysfunction a cause of insulin resistance? Trends Endocrinol Metab 19 324 330 doi:10.1016/j.tem.2008.08.001

8. PetersenKF

DufourS

BefroyD

GarciaR

ShulmanGI

2004 Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350 664 671 doi:10.1056/NEJMoa031314

9. MoothaVK

LindgrenCM

ErikssonK

SubramanianA

SihagS

2003 PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34 267 273 doi:10.1038/ng1180

10. PattiME

ButteAJ

CrunkhornS

CusiK

BerriaR

2003 Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100 8466 8471 doi:10.1073/pnas.1032913100

11. KovesTR

UssherJR

NolRC

SlentzD

MosedaleM

n.d. Mitochondrial Overload and Incomplete Fatty Acid Oxidation Contribute to Skeletal Muscle Insulin Resistance. Cell Metabolism Available: http://www.sciencedirect.com.ezp-prod1.hul.harvard.edu/science?_ob=ArticleURL&_udi=B7MFH-4RJ518M-8&_user=209690&_coverDate=01%2F31%2F2008&_alid=1179716171&_rdoc=1&_fmt=high&_orig=search&_cdi=23259&_st=1&_docanchor=&_ct=14&_acct=C000014438&_version=1&_urlVersion=0&_userid=209690&md5=d8d4b7c3bc5ff26bd8514308c4d89cd5. Accessed 25 Jan 2010

12. SchiffM

LoublierS

CoulibalyA

BénitP

Ogier de BaulnyH

2009 Mitochondria and diabetes mellitus: untangling a conflictive relationship? J Inherit Metab Dis Available: http://www.ncbi.nlm.nih.gov.ezp-prod1.hul.harvard.edu/pubmed/19821144. Accessed 7 Dec 2009

13. ReilingE

van Vliet-OstaptchoukJV

van 't RietE

van HaeftenTW

ArpPA

2009 Genetic association analysis of 13 nuclear-encoded mitochondrial candidate genes with type II diabetes mellitus: the DAMAGE study. Eur J Hum Genet 17 1056 1062 doi:10.1038/ejhg.2009.4

14. JiaJ

TianY

CaoZ

TaoL

ZhangX

n.d. The polymorphisms of UCP1 genes associated with fat metabolism, obesity and diabetes. Molecular Biology Reports Available: http://dx.doi.org.ezp-prod1.hul.harvard.edu/10.1007/s11033-009-9550-2. Accessed 7 Dec 2009

15. AndrulionytèL

ZacharovaJ

ChiassonJ

LaaksoM

2004 Common polymorphisms of the PPAR-gamma2 (Pro12Ala) and PGC-1alpha (Gly482Ser) genes are associated with the conversion from impaired glucose tolerance to type 2 diabetes in the STOP-NIDDM trial. Diabetologia 47 2176 2184 doi:10.1007/s00125-004-1577-2

16. SaxenaR

de BakkerPIW

SingerK

MoothaV

BurttN

2006 Comprehensive association testing of common mitochondrial DNA variation in metabolic disease. Am J Hum Genet 79 54 61 doi:10.1086/504926

17. SaxenaR

VoightBF

LyssenkoV

BurttNP

de BakkerPIW

2007 Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316 1331 1336 doi:10.1126/science.1142358

18. ScottLJ

MohlkeKL

BonnycastleLL

WillerCJ

LiY

2007 A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316 1341 1345 doi:10.1126/science.1142382

19. ZegginiE

WeedonMN

LindgrenCM

FraylingTM

ElliottKS

2007 Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316 1336 1341 doi:10.1126/science.1142364

20. ZegginiE

ScottLJ

SaxenaR

VoightBF

MarchiniJL

2008 Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40 638 645 doi:10.1038/ng.120

21. FarrisW

LeissringMA

HemmingML

ChangAY

SelkoeDJ

2005 Alternative splicing of human insulin-degrading enzyme yields a novel isoform with a decreased ability to degrade insulin and amyloid beta-protein. Biochemistry 44 6513 6525 doi:10.1021/bi0476578

22. PagliariniDJ

CalvoSE

ChangB

ShethSA

VafaiSB

2008 A mitochondrial protein compendium elucidates complex I disease biology. Cell 134 112 123 doi:10.1016/j.cell.2008.06.016

23. WangK

LiM

BucanM

2007 Pathway-Based Approaches for Analysis of Genomewide Association Studies. Am J Hum Genet 81 Available: http://www.ncbi.nlm.nih.gov.ezp-prod1.hul.harvard.edu/pubmed/17966091. Accessed 5 Nov 2009

24. SubramanianA

TamayoP

MoothaVK

MukherjeeS

EbertBL

2005 Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102 15545 15550 doi:10.1073/pnas.0506580102

25. HongM

PawitanY

MagnussonPKE

PrinceJA

2009 Strategies and issues in the detection of pathway enrichment in genome-wide association studies. Hum Genet 126 289 301 doi:10.1007/s00439-009-0676-z

26. PengG

LuoL

SiuH

ZhuY

HuP

2010 Gene and pathway-based second-wave analysis of genome-wide association studies. Eur J Hum Genet 18 111 117 doi:10.1038/ejhg.2009.115

27. PerryJRB

McCarthyMI

HattersleyAT

ZegginiE

WeedonMN

2009 Interrogating type 2 diabetes genome-wide association data using a biological pathway-based approach. Diabetes 58 1463 1467 doi:10.2337/db08-1378

28. ElbersCC

van EijkKR

FrankeL

MulderF

van der SchouwYT

2009 Using genome-wide pathway analysis to unravel the etiology of complex diseases. Genet Epidemiol 33 419 431 doi:10.1002/gepi.20395

29. EleftherohorinouH

WrightV

HoggartC

HartikainenA

JarvelinM

2009 Pathway Analysis of GWAS Provides New Insights into Genetic Susceptibility to 3 Inflammatory Diseases. PLoS ONE 4 e8068 doi:10.1371/journal.pone.0008068

30. WangK

ZhangH

KugathasanS

AnneseV

BradfieldJP

2009 Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn Disease. Am J Hum Genet 84 399 405 doi:10.1016/j.ajhg.2009.01.026

31. BaranziniSE

GalweyNW

WangJ

KhankhanianP

LindbergR

2009 Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. Hum Mol Genet 18 2078 2090 doi:10.1093/hmg/ddp120

32. ChasmanDI

2008 On the utility of gene set methods in genomewide association studies of quantitative traits. Genet Epidemiol 32 658 668 doi:10.1002/gepi.20334

33. ChaiH

SicotteH

BaileyKR

TurnerST

AsmannYW

2009 GLOSSI: a method to assess the association of genetic loci-sets with complex diseases. BMC Bioinformatics 10 102 doi:10.1186/1471-2105-10-102

34. KathiresanS

WillerCJ

PelosoGM

DemissieS

MusunuruK

2009 Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 41 56 65 doi:10.1038/ng.291

35. KellyDP

ScarpullaRC

2004 Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18 357 368 doi:10.1101/gad.1177604

36. VoightBF

ScottLJ

SteinthorsdottirV

MorrisAP

DinaC

2010 Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nature Genetics (in press)

37. DupuisJ

LangenbergC

ProkopenkoI

SaxenaR

SoranzoN

2010 New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42 105 116 doi:10.1038/ng.520

38. SaxenaR

HivertM

LangenbergC

TanakaT

PankowJS

2010 Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat Genet 42 142 148 doi:10.1038/ng.521

39. NealeBM

ShamPC

2004 The future of association studies: gene-based analysis and replication. Am J Hum Genet 75 353 362 doi:10.1086/423901

40. SacconeSF

HinrichsAL

SacconeNL

ChaseGA

KonvickaK

2007 Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 16 36 49 doi:10.1093/hmg/ddl438

41. PurcellS

ChernySS

ShamPC

2003 Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19 149 150

42. ThomasPD

CampbellMJ

KejariwalA

MiH

KarlakB

2003 PANTHER: A Library of Protein Families and Subfamilies Indexed by Function. Genome Research 13 2129 2141 doi:10.1101/gr.772403

43. AshburnerM

BallCA

BlakeJA

BotsteinD

ButlerH

2000 Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25 25 29 doi:10.1038/75556

44. WanJ

JiangL

LüQ

KeL

LiX

2009 Activation of PPARdelta up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic beta-cells. Biochem Biophys Res Commun Available: http://www.ncbi.nlm.nih.gov.ezp-prod1.hul.harvard.edu/pubmed/20040361. Accessed 13 Jan 2010

45. GoffartS

WiesnerRJ

2003 Regulation and co-ordination of nuclear gene expression during mitochondrial biogenesis. Exp Physiol 88 33 40

46. FinckBN

KellyDP

2006 PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116 615 622 doi:10.1172/JCI27794

47. GiguèreV

2008 Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr Rev 29 677 696 doi:10.1210/er.2008-0017

48. YuJ

AuwerxJ

2009 The role of sirtuins in the control of metabolic homeostasis. Ann N Y Acad Sci 1173 Suppl 1 E10 19 doi:10.1111/j.1749-6632.2009.04952.x

49. MatthewsDR

HoskerJP

RudenskiAS

NaylorBA

TreacherDF

1985 Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28 412 419

50. MoothaVK

HandschinC

ArlowD

XieX

St PierreJ

2004 Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci USA 101 6570 6575 doi:10.1073/pnas.0401401101

51. FinleyLWS

HaigisMC

2009 The coordination of nuclear and mitochondrial communication during aging and calorie restriction. Ageing Res Rev 8 173 188 doi:10.1016/j.arr.2009.03.003

52. LiangF

KumeS

KoyaD

2009 SIRT1 and insulin resistance. Nat Rev Endocrinol 5 367 373 doi:10.1038/nrendo.2009.101

53. PurcellSM

WrayNR

StoneJL

VisscherPM

O'DonovanMC

2009 Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460 748 752 doi:10.1038/nature08185

54. VeyrierasJ

KudaravalliS

KimSY

DermitzakisET

GiladY

2008 High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet 4 e1000214 doi:10.1371/journal.pgen.1000214

55. SokalRR

RohlfFJ

1995 Biometry: The principles and Practice of Statistics in Biological Research. Third Edition. W.H. Freeman and Company, New York

56. MyersS

BottoloL

FreemanC

McVeanG

DonnellyP

2005 A fine-scale map of recombination rates and hotspots across the human genome. Science 310 321 324 doi:10.1126/science.1117196

57. TapperW

CollinsA

GibsonJ

ManiatisN

EnnisS

2005 A map of the human genome in linkage disequilibrium units. Proc Natl Acad Sci USA 102 11835 11839 doi:10.1073/pnas.0505262102

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#