#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Survival and Growth of Yeast without Telomere Capping by Cdc13 in the Absence of Sgs1, Exo1, and Rad9


Maintenance of telomere capping is absolutely essential to the survival of eukaryotic cells. Telomere capping proteins, such as Cdc13 and POT1, are essential for the viability of budding yeast and mammalian cells, respectively. Here we identify, for the first time, three genetic modifications that allow budding yeast cells to survive without telomere capping by Cdc13. We found that simultaneous inactivation of Sgs1, Exo1, and Rad9, three DNA damage response (DDR) proteins, is sufficient to allow cell division in the absence of Cdc13. Quantitative amplification of ssDNA (QAOS) was used to show that the RecQ helicase Sgs1 plays an important role in the resection of uncapped telomeres, especially in the absence of checkpoint protein Rad9. Strikingly, simultaneous deletion of SGS1 and the nuclease EXO1, further reduces resection at uncapped telomeres and together with deletion of RAD9 permits cell survival without CDC13. Pulsed-field gel electrophoresis studies show that cdc13-1 rad9Δ sgs1Δ exo1Δ strains can maintain linear chromosomes despite the absence of telomere capping by Cdc13. However, with continued passage, the telomeres of such strains eventually become short and are maintained by recombination-based mechanisms. Remarkably, cdc13Δ rad9Δ sgs1Δ exo1Δ strains, lacking any Cdc13 gene product, are viable and can grow indefinitely. Our work has uncovered a critical role for RecQ helicases in limiting the division of cells with uncapped telomeres, and this may provide one explanation for increased tumorigenesis in human diseases associated with mutations of RecQ helicases. Our results reveal the plasticity of the telomere cap and indicate that the essential role of telomere capping is to counteract specific aspects of the DDR.


Vyšlo v časopise: Survival and Growth of Yeast without Telomere Capping by Cdc13 in the Absence of Sgs1, Exo1, and Rad9. PLoS Genet 6(8): e32767. doi:10.1371/journal.pgen.1001072
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001072

Souhrn

Maintenance of telomere capping is absolutely essential to the survival of eukaryotic cells. Telomere capping proteins, such as Cdc13 and POT1, are essential for the viability of budding yeast and mammalian cells, respectively. Here we identify, for the first time, three genetic modifications that allow budding yeast cells to survive without telomere capping by Cdc13. We found that simultaneous inactivation of Sgs1, Exo1, and Rad9, three DNA damage response (DDR) proteins, is sufficient to allow cell division in the absence of Cdc13. Quantitative amplification of ssDNA (QAOS) was used to show that the RecQ helicase Sgs1 plays an important role in the resection of uncapped telomeres, especially in the absence of checkpoint protein Rad9. Strikingly, simultaneous deletion of SGS1 and the nuclease EXO1, further reduces resection at uncapped telomeres and together with deletion of RAD9 permits cell survival without CDC13. Pulsed-field gel electrophoresis studies show that cdc13-1 rad9Δ sgs1Δ exo1Δ strains can maintain linear chromosomes despite the absence of telomere capping by Cdc13. However, with continued passage, the telomeres of such strains eventually become short and are maintained by recombination-based mechanisms. Remarkably, cdc13Δ rad9Δ sgs1Δ exo1Δ strains, lacking any Cdc13 gene product, are viable and can grow indefinitely. Our work has uncovered a critical role for RecQ helicases in limiting the division of cells with uncapped telomeres, and this may provide one explanation for increased tumorigenesis in human diseases associated with mutations of RecQ helicases. Our results reveal the plasticity of the telomere cap and indicate that the essential role of telomere capping is to counteract specific aspects of the DDR.


Zdroje

1. VerdunRE

KarlsederJ

2007

Replication and protection of telomeres.

Nature

447

924

931

2. d'Adda di FagagnaF

2008

Living on a break: cellular senescence as a DNA-damage response.

Nat Rev Cancer

8

512

522

3. StewartSA

WeinbergRA

2006

Telomeres: cancer to human aging.

Annu Rev Cell Dev Biol

22

531

557

4. PalmW

de LangeT

2008

How shelterin protects mammalian telomeres.

Annu Rev Genet

42

301

334

5. de LangeT

2009

How telomeres solve the end-protection problem.

Science

326

948

952

6. MiyakeY

NakamuraM

NabetaniA

ShimamuraS

TamuraM

2009

RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway.

Mol Cell

36

193

206

7. WellingerRJ

2009

The CST complex and telomere maintenance: the exception becomes the rule.

Mol Cell

36

168

169

8. SurovtsevaYV

ChurikovD

BoltzKA

SongX

LambJC

2009

Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes.

Mol Cell

36

207

218

9. LydallD

2009

Taming the tiger by the tail: modulation of DNA damage responses by telomeres.

Embo J

28

2174

2187

10. GarvikB

CarsonM

HartwellL

1995

Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint.

Mol Cell Biol

15

6128

6138

11. HockemeyerD

DanielsJP

TakaiH

de LangeT

2006

Recent expansion of the telomeric complex in rodents: Two distinct POT1 proteins protect mouse telomeres.

Cell

126

63

77

12. WuL

MultaniAS

HeH

Cosme-BlancoW

DengY

2006

Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres.

Cell

126

49

62

13. GrandinN

DamonC

CharbonneauM

2001

Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination.

Embo J

20

6127

6139

14. ChuWK

HicksonID

2009

RecQ helicases: multifunctional genome caretakers.

Nat Rev Cancer

9

644

654

15. OpreskoPL

2008

Telomere ResQue and preservation–roles for the Werner syndrome protein and other RecQ helicases.

Mech Ageing Dev

129

79

90

16. LeeJY

KozakM

MartinJD

PennockE

JohnsonFB

2007

Evidence that a RecQ helicase slows senescence by resolving recombining telomeres.

PLoS Biol

5

e160

doi:10.1371/journal.pbio.0050160

17. HuangP

PrydeFE

LesterD

MaddisonRL

BortsRH

2001

SGS1 is required for telomere elongation in the absence of telomerase.

Curr Biol

11

125

129

18. JohnsonFB

MarciniakRA

McVeyM

StewartSA

HahnWC

2001

The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase.

Embo J

20

905

913

19. RogO

MillerKM

FerreiraMG

CooperJP

2009

Sumoylation of RecQ helicase controls the fate of dysfunctional telomeres.

Mol Cell

33

559

569

20. ZhuZ

ChungWH

ShimEY

LeeSE

IraG

2008

Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends.

Cell

134

981

994

21. GravelS

ChapmanJR

MagillC

JacksonSP

2008

DNA helicases Sgs1 and BLM promote DNA double-strand break resection.

Genes Dev

22

2767

2772

22. MimitouEP

SymingtonLS

2008

Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing.

Nature

455

770

774

23. NimonkarAV

OzsoyAZ

GenschelJ

ModrichP

KowalczykowskiSC

2008

Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair.

Proc Natl Acad Sci U S A

105

16906

16911

24. BonettiD

MartinaM

ClericiM

LucchiniG

LongheseMP

2009

Multiple pathways regulate 3′ overhang generation at S. cerevisiae telomeres.

Mol Cell

35

70

81

25. ZubkoMK

GuillardS

LydallD

2004

Exo1 and Rad24 differentially regulate generation of ssDNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants.

Genetics

168

103

115

26. CrabbeL

VerdunRE

HaggblomCI

KarlsederJ

2004

Defective telomere lagging strand synthesis in cells lacking WRN helicase activity.

Science

306

1951

1953

27. LydallD

WeinertT

1995

Yeast checkpoint genes in DNA damage processing: implications for repair and arrest.

Science

270

1488

1491

28. ZubkoMK

LydallD

2006

Linear chromosome maintenance in the absence of essential telomere-capping proteins.

Nat Cell Biol

8

734

740

29. LarriveeM

WellingerRJ

2006

Telomerase- and capping-independent yeast survivors with alternate telomere states.

Nat Cell Biol

8

741

747

30. BaumannP

CechTR

2001

Pot1, the putative telomere end-binding protein in fission yeast and humans.

Science

292

1171

1175

31. FosterSS

ZubkoMK

GuillardS

LydallD

2006

MRX protects telomeric DNA at uncapped telomeres of budding yeast cdc13-1 mutants.

DNA Repair (Amst)

5

840

851

32. MorinI

NgoHP

GreenallA

ZubkoMK

MorriceN

2008

Checkpoint-dependent phosphorylation of Exo1 modulates the DNA damage response.

Embo J

27

2400

2410

33. BoothC

GriffithE

BradyG

LydallD

2001

Quantitative amplification of single-stranded DNA (QAOS) demonstrates that cdc13-1 mutants generate ssDNA in a telomere to centromere direction.

Nucleic Acids Res

29

4414

4422

34. LazzaroF

SapountziV

GranataM

PellicioliA

VazeM

2008

Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres.

Embo J

27

1502

1512

35. PennockE

BuckleyK

LundbladV

2001

Cdc13 delivers separate complexes to the telomere for end protection and replication.

Cell

104

387

396

36. TengSC

ZakianVA

1999

Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae.

Mol Cell Biol

19

8083

8093

37. LundbladV

BlackburnEH

1993

An alternative pathway for yeast telomere maintenance rescues est1- senescence.

Cell

73

347

360

38. GorgoulisVG

VassiliouLV

KarakaidosP

ZacharatosP

KotsinasA

2005

Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions.

Nature

434

907

913

39. HerbigU

FerreiraM

CondelL

CareyD

SedivyJM

2006

Cellular senescence in aging primates.

Science

311

1257

40. GoldsteinAL

McCuskerJH

1999

Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae.

Yeast

15

1541

1553

41. ZubkoMK

MaringeleL

FosterSS

LydallD

2006

Detecting repair intermediates in vivo: effects of DNA damage response genes on single-stranded DNA accumulation at uncapped telomeres in budding yeast.

Methods Enzymol

409

285

300

42. MaringeleL

LydallD

2006

Pulsed-field gel electrophoresis of budding yeast chromosomes.

Methods Mol Biol

313

65

73

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#