Ancient Protostome Origin of Chemosensory Ionotropic Glutamate Receptors and the Evolution of Insect Taste and Olfaction
Ionotropic glutamate receptors (iGluRs) are a highly conserved family of ligand-gated ion channels present in animals, plants, and bacteria, which are best characterized for their roles in synaptic communication in vertebrate nervous systems. A variant subfamily of iGluRs, the Ionotropic Receptors (IRs), was recently identified as a new class of olfactory receptors in the fruit fly, Drosophila melanogaster, hinting at a broader function of this ion channel family in detection of environmental, as well as intercellular, chemical signals. Here, we investigate the origin and evolution of IRs by comprehensive evolutionary genomics and in situ expression analysis. In marked contrast to the insect-specific Odorant Receptor family, we show that IRs are expressed in olfactory organs across Protostomia—a major branch of the animal kingdom that encompasses arthropods, nematodes, and molluscs—indicating that they represent an ancestral protostome chemosensory receptor family. Two subfamilies of IRs are distinguished: conserved “antennal IRs,” which likely define the first olfactory receptor family of insects, and species-specific “divergent IRs,” which are expressed in peripheral and internal gustatory neurons, implicating this family in taste and food assessment. Comparative analysis of drosophilid IRs reveals the selective forces that have shaped the repertoires in flies with distinct chemosensory preferences. Examination of IR gene structure and genomic distribution suggests both non-allelic homologous recombination and retroposition contributed to the expansion of this multigene family. Together, these findings lay a foundation for functional analysis of these receptors in both neurobiological and evolutionary studies. Furthermore, this work identifies novel targets for manipulating chemosensory-driven behaviours of agricultural pests and disease vectors.
Vyšlo v časopise:
Ancient Protostome Origin of Chemosensory Ionotropic Glutamate Receptors and the Evolution of Insect Taste and Olfaction. PLoS Genet 6(8): e32767. doi:10.1371/journal.pgen.1001064
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001064
Souhrn
Ionotropic glutamate receptors (iGluRs) are a highly conserved family of ligand-gated ion channels present in animals, plants, and bacteria, which are best characterized for their roles in synaptic communication in vertebrate nervous systems. A variant subfamily of iGluRs, the Ionotropic Receptors (IRs), was recently identified as a new class of olfactory receptors in the fruit fly, Drosophila melanogaster, hinting at a broader function of this ion channel family in detection of environmental, as well as intercellular, chemical signals. Here, we investigate the origin and evolution of IRs by comprehensive evolutionary genomics and in situ expression analysis. In marked contrast to the insect-specific Odorant Receptor family, we show that IRs are expressed in olfactory organs across Protostomia—a major branch of the animal kingdom that encompasses arthropods, nematodes, and molluscs—indicating that they represent an ancestral protostome chemosensory receptor family. Two subfamilies of IRs are distinguished: conserved “antennal IRs,” which likely define the first olfactory receptor family of insects, and species-specific “divergent IRs,” which are expressed in peripheral and internal gustatory neurons, implicating this family in taste and food assessment. Comparative analysis of drosophilid IRs reveals the selective forces that have shaped the repertoires in flies with distinct chemosensory preferences. Examination of IR gene structure and genomic distribution suggests both non-allelic homologous recombination and retroposition contributed to the expansion of this multigene family. Together, these findings lay a foundation for functional analysis of these receptors in both neurobiological and evolutionary studies. Furthermore, this work identifies novel targets for manipulating chemosensory-driven behaviours of agricultural pests and disease vectors.
Zdroje
1. GereauRW
SwansonGT
2008 The Glutamate Receptors Totowa, N.J. Humana Press xi, 576
2. SobolevskyAI
RosconiMP
GouauxE
2009 X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462 745 756
3. JinR
SinghSK
GuS
FurukawaH
SobolevskyAI
2009 Crystal structure and association behaviour of the GluR2 amino-terminal domain. Embo J 28 1812 1823
4. ArmstrongN
SunY
ChenGQ
GouauxE
1998 Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395 913 917
5. KunerT
SeeburgPH
GuyHR
2003 A common architecture for K+ channels and ionotropic glutamate receptors? Trends Neurosci 26 27 32
6. MayerML
ArmstrongN
2004 Structure and function of glutamate receptor ion channels. Annu Rev Physiol 66 161 181
7. TikhonovDB
MagazanikLG
2009 Origin and molecular evolution of ionotropic glutamate receptors. Neurosci Behav Physiol 39 763 773
8. MorozLL
EdwardsJR
PuthanveettilSV
KohnAB
HaT
2006 Neuronal transcriptome of aplysia: neuronal compartments and circuitry. Cell 127 1453 1467
9. BrockiePJ
MadsenDM
ZhengY
MellemJ
MaricqAV
2001 Differential expression of glutamate receptor subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC-42. J Neurosci 21 1510 1522
10. LittletonJT
GanetzkyB
2000 Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron 26 35 43
11. ChenGQ
CuiC
MayerML
GouauxE
1999 Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402 817 821
12. LamHM
ChiuJ
HsiehMH
MeiselL
OliveiraIC
1998 Glutamate-receptor genes in plants. Nature 396 125 126
13. ChiuJC
BrennerED
DeSalleR
NitabachMN
HolmesTC
2002 Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana. Mol Biol Evol 19 1066 1082
14. QiZ
StephensNR
SpaldingEP
2006 Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant Physiol 142 963 971
15. BentonR
VanniceKS
Gomez-DiazC
VosshallLB
2009 Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136 149 162
16. VosshallLB
StockerRF
2007 Molecular Architecture of Smell and Taste in Drosophila. Annu Rev Neurosci 30 505 533
17. FinnRD
TateJ
MistryJ
CoggillPC
SammutSJ
2008 The Pfam protein families database. Nucleic Acids Res 36 D281 288
18. SakaryaO
ArmstrongKA
AdamskaM
AdamskiM
WangIF
2007 A post-synaptic scaffold at the origin of the animal kingdom. PLoS One 2 e506 10.1371/journal.pone.0000506
19. WiegmannBM
TrautweinMD
KimJW
CasselBK
BertoneMA
2009 Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biol 7 34
20. HedgesSB
DudleyJ
KumarS
2006 TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22 2971 2972
21. CumminsSF
ErpenbeckD
ZouZ
ClaudianosC
MorozLL
2009 Candidate chemoreceptor subfamilies differentially expressed in the chemosensory organs of the mollusc Aplysia. BMC Biol 7 28
22. ElliottCJ
SussweinAJ
2002 Comparative neuroethology of feeding control in molluscs. J Exp Biol 205 877 896
23. PrestonRJ
LeeRM
1973 Feeding behavior in Aplysia californica: role of chemical and tactile stimuli. J Comp Physiol Psychol 82 368 381
24. HollinsB
HardinD
GimelbrantAA
McClintockTS
2003 Olfactory-enriched transcripts are cell-specific markers in the lobster olfactory organ. J Comp Neurol 455 125 138
25. StepanyanR
HollinsB
BrockSE
McClintockTS
2004 Primary culture of lobster (Homarus americanus) olfactory sensory neurons. Chem Senses 29 179 187
26. AlbertsonDG
ThomsonJN
1976 The pharynx of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 275 299 325
27. ScottK
BradyRJr
CravchikA
MorozovP
RzhetskyA
2001 A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104 661 673
28. ClynePJ
WarrCG
CarlsonJR
2000 Candidate Taste Receptors in Drosophila. Science 287 1830 1834
29. BrandAH
PerrimonN
1993 Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118 401 415
30. BischofJ
MaedaRK
HedigerM
KarchF
BaslerK
2007 An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A 104 3312 3317
31. MontellC
2009 A taste of the Drosophila gustatory receptors. Curr Opin Neurobiol 19 345 353
32. ClarkAG
EisenMB
SmithDR
BergmanCM
OliverB
2007 Evolution of genes and genomes on the Drosophila phylogeny. Nature 450 203 218
33. RichardsS
LiuY
BettencourtBR
HradeckyP
LetovskyS
2005 Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. Genome Res 15 1 18
34. RussoCA
TakezakiN
NeiM
1995 Molecular phylogeny and divergence times of drosophilid species. Mol Biol Evol 12 391 404
35. GauntMW
MilesMA
2002 An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol Biol Evol 19 748 761
36. McDermottSR
KlimanRM
2008 Estimation of isolation times of the island species in the Drosophila simulans complex from multilocus DNA sequence data. PLoS One 3 e2442 10.1371/journal.pone.0002442
37. HarrisonPM
MilburnD
ZhangZ
BertoneP
GersteinM
2003 Identification of pseudogenes in the Drosophila melanogaster genome. Nucleic Acids Res 31 1033 1037
38. PetrovDA
ChaoYC
StephensonEC
HartlDL
1998 Pseudogene evolution in Drosophila suggests a high rate of DNA loss. Mol Biol Evol 15 1562 1567
39. McBrideCS
ArguelloJR
O'MearaBC
2007 Five Drosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics 177 1395 1416
40. PowellJR
1997 Progress and prospects in evolutionary biology: the Drosophila model. Oxford University Press
41. KaessmannH
VinckenboschN
LongM
2009 RNA-based gene duplication: mechanistic and evolutionary insights. Nat Rev Genet 10 19 31
42. Coulombe-HuntingtonJ
MajewskiJ
2007 Intron loss and gain in Drosophila. Mol Biol Evol 24 2842 2850
43. KooninEV
MakarovaKS
AravindL
2001 Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55 709 742
44. ChiuJ
DeSalleR
LamHM
MeiselL
CoruzziG
1999 Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Mol Biol Evol 16 826 838
45. ShahamS
2009 Chemosensory organs as models of neuronal synapses. Nat Rev Neurosci
46. NeiM
NiimuraY
NozawaM
2008 The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 9 951 963
47. ParmleyJL
UrrutiaAO
PotrzebowskiL
KaessmannH
HurstLD
2007 Splicing and the evolution of proteins in mammals. PLoS Biol 5 e14 10.1371/journal.pbio.0050014
48. NeiM
RooneyAP
2005 Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39 121 152
49. Sanchez-GraciaA
VieiraFG
RozasJ
2009 Molecular evolution of the major chemosensory gene families in insects. Heredity 103 208 216
50. GrandisonRC
PiperMD
PartridgeL
2009 Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462 1061 1064
51. ShiraishiA
KuwabaraM
1970 The effects of amino acids on the labellar hair chemosensory cells of the fly. J Gen Physiol 56 768 782
52. ChikenS
KuwasawaK
KurokawaM
OhsugaK
2001 Amino acid-induced reflexes and their neural pathways in an opisthobranch mollusc Pleurobranchaea japonica. Zoological Science 18 456 473
53. BurgessMF
DerbyCD
1997 Two novel types of L-glutamate receptors with affinities for NMDA and L-cysteine in the olfactory organ of the Caribbean spiny lobster Panulirus argus. Brain Res 771 292 304
54. BentonR
SachseS
MichnickSW
VosshallLB
2006 Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4 e20 10.1371/journal.pbio.0040020
55. LarssonMC
DomingosAI
JonesWD
ChiappeME
AmreinH
2004 Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43 703 714
56. RobertsonHM
WarrCG
CarlsonJR
2003 Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci U S A 100 Suppl 2 14537 14542
57. JonesWD
NguyenTA
KlossB
LeeKJ
VosshallLB
2005 Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr Biol 15 R119 121
58. Penalva-AranaDC
LynchM
RobertsonHM
2009 The chemoreceptor genes of the waterflea Daphnia pulex: many Grs but no Ors. BMC Evol Biol 9 79
59. EdwardsSL
CharlieNK
MilfortMC
BrownBS
GravlinCN
2008 A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biol 6 e198 10.1371/journal.pbio.0060198
60. MorescoJJ
KoelleMR
2004 Activation of EGL-47, a Galphao-coupled receptor, inhibits function of hermaphrodite-specific motor neurons to regulate Caenorhabditis elegans egg-laying behavior. J Neurosci 24 8522 8530
61. ReboraM
PiersantiS
GainoE
2009 The antennal sensilla of adult mayflies: Rhithrogena semicolorata as a case study. Micron 40 571 576
62. YaoCA
IgnellR
CarlsonJR
2005 Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. J Neurosci 25 8359 8367
63. MarkowTA
O'GradyPM
2007 Drosophila biology in the genomic age. Genetics 177 1269 1276
64. StensmyrMC
2009 Drosophila sechellia as a model in chemosensory neuroecology. Ann N Y Acad Sci 1170 468 475
65. JonesCD
2005 The genetics of adaptation in Drosophila sechellia. Genetica 123 137 145
66. ZouDJ
CheslerA
FiresteinS
2009 How the olfactory bulb got its glomeruli: a just so story? Nat Rev Neurosci 10 611 618
67. StrausfeldNJ
HildebrandJG
1999 Olfactory systems: common design, uncommon origins? Curr Opin Neurobiol 9 634 639
68. BentonR
2006 On the ORigin of smell: odorant receptors in insects. Cell Mol Life Sci 63 1579 1585
69. EddySR
1998 Profile hidden Markov models. Bioinformatics 14 755 763
70. BirneyE
ClampM
DurbinR
2004 GeneWise and Genomewise. Genome Res 14 988 995
71. KroghA
LarssonB
von HeijneG
SonnhammerEL
2001 Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305 567 580
72. BendtsenJD
NielsenH
von HeijneG
BrunakS
2004 Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340 783 795
73. DoCB
MahabhashyamMS
BrudnoM
BatzoglouS
2005 ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res 15 330 340
74. WaterhouseAM
ProcterJB
MartinDM
ClampM
BartonGJ
2009 Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25 1189 1191
75. AbascalF
ZardoyaR
PosadaD
2005 ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21 2104 2105
76. GuindonS
GascuelO
2003 A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52 696 704
77. StamatakisA
LudwigT
MeierH
2005 RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21 456 463
78. MaddisonWP
MaddisonDR
2009 Mesquite: A modular system for evolutionary analysis. In: http://mesquiteproject.org, editor. 2.6 ed
79. LetunicI
BorkP
2007 Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23 127 128
80. EdgarRC
2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32 1792 1797
81. CollingridgeGL
OlsenRW
PetersJ
SpeddingM
2009 A nomenclature for ligand-gated ion channels. Neuropharmacology 56 2 5
82. HahnMW
De BieT
StajichJE
NguyenC
CristianiniN
2005 Estimating the tempo and mode of gene family evolution from comparative genomic data. Genome Research 15 1153 1160
83. De BieT
CristianiniN
DemuthJP
HahnMW
2006 CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22 1269 1271
84. TamuraK
SubramanianS
KumarS
2004 Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Molecular Biology and Evolution 21 36 44
85. VieiraFG
Sanchez-GraciaA
RozasJ
2007 Comparative genomic analysis of the odorant-binding protein family in 12 Drosophila genomes: purifying selection and birth-and-death evolution. Genome Biology 8
86. YangZH
1997 PAML: a program package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences 13 555 556
87. BrawandD
WahliW
KaessmannH
2008 Loss of egg yolk genes in mammals and the origin of lactation and placentation. PLoS Biol 6 e63 10.1371/journal.pbio.0060063
88. MarksteinM
PitsouliC
VillaltaC
CelnikerSE
PerrimonN
2008 Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat Genet 40 476 483
89. LeeT
LuoL
1999 Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22 451 461
90. CumminsSF
LeblancL
DegnanBM
NagleGT
2009 Molecular identification of candidate chemoreceptor genes and signal transduction components in the sensory epithelium of Aplysia. J Exp Biol 212 2037 2044
91. LivingstoneCD
BartonGJ
1993 Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation. Comput Appl Biosci 9 745 756
92. MedinaM
CollinsTM
WalshPJ
2001 mtDNA ribosomal gene phylogeny of sea hares in the genus Aplysia (Gastropoda, Opisthobranchia, Anaspidea): implications for comparative neurobiology. Syst Biol 50 676 688
93. SchaefferSW
BhutkarA
McAllisterBF
MatsudaM
MatzkinLM
2008 Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps. Genetics 179 1601 1655
94. KokoevaMV
StorchKF
KleinC
OesterheltD
2002 A novel mode of sensory transduction in archaea: binding protein-mediated chemotaxis towards osmoprotectants and amino acids. Embo J 21 2312 2322
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 8
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Identification of the Bovine Arachnomelia Mutation by Massively Parallel Sequencing Implicates Sulfite Oxidase (SUOX) in Bone Development
- Common Inherited Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits
- A Model for Damage Load and Its Implications for the Evolution of Bacterial Aging
- Did Genetic Drift Drive Increases in Genome Complexity?