#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Ancient Protostome Origin of Chemosensory Ionotropic Glutamate Receptors and the Evolution of Insect Taste and Olfaction


Ionotropic glutamate receptors (iGluRs) are a highly conserved family of ligand-gated ion channels present in animals, plants, and bacteria, which are best characterized for their roles in synaptic communication in vertebrate nervous systems. A variant subfamily of iGluRs, the Ionotropic Receptors (IRs), was recently identified as a new class of olfactory receptors in the fruit fly, Drosophila melanogaster, hinting at a broader function of this ion channel family in detection of environmental, as well as intercellular, chemical signals. Here, we investigate the origin and evolution of IRs by comprehensive evolutionary genomics and in situ expression analysis. In marked contrast to the insect-specific Odorant Receptor family, we show that IRs are expressed in olfactory organs across Protostomia—a major branch of the animal kingdom that encompasses arthropods, nematodes, and molluscs—indicating that they represent an ancestral protostome chemosensory receptor family. Two subfamilies of IRs are distinguished: conserved “antennal IRs,” which likely define the first olfactory receptor family of insects, and species-specific “divergent IRs,” which are expressed in peripheral and internal gustatory neurons, implicating this family in taste and food assessment. Comparative analysis of drosophilid IRs reveals the selective forces that have shaped the repertoires in flies with distinct chemosensory preferences. Examination of IR gene structure and genomic distribution suggests both non-allelic homologous recombination and retroposition contributed to the expansion of this multigene family. Together, these findings lay a foundation for functional analysis of these receptors in both neurobiological and evolutionary studies. Furthermore, this work identifies novel targets for manipulating chemosensory-driven behaviours of agricultural pests and disease vectors.


Vyšlo v časopise: Ancient Protostome Origin of Chemosensory Ionotropic Glutamate Receptors and the Evolution of Insect Taste and Olfaction. PLoS Genet 6(8): e32767. doi:10.1371/journal.pgen.1001064
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001064

Souhrn

Ionotropic glutamate receptors (iGluRs) are a highly conserved family of ligand-gated ion channels present in animals, plants, and bacteria, which are best characterized for their roles in synaptic communication in vertebrate nervous systems. A variant subfamily of iGluRs, the Ionotropic Receptors (IRs), was recently identified as a new class of olfactory receptors in the fruit fly, Drosophila melanogaster, hinting at a broader function of this ion channel family in detection of environmental, as well as intercellular, chemical signals. Here, we investigate the origin and evolution of IRs by comprehensive evolutionary genomics and in situ expression analysis. In marked contrast to the insect-specific Odorant Receptor family, we show that IRs are expressed in olfactory organs across Protostomia—a major branch of the animal kingdom that encompasses arthropods, nematodes, and molluscs—indicating that they represent an ancestral protostome chemosensory receptor family. Two subfamilies of IRs are distinguished: conserved “antennal IRs,” which likely define the first olfactory receptor family of insects, and species-specific “divergent IRs,” which are expressed in peripheral and internal gustatory neurons, implicating this family in taste and food assessment. Comparative analysis of drosophilid IRs reveals the selective forces that have shaped the repertoires in flies with distinct chemosensory preferences. Examination of IR gene structure and genomic distribution suggests both non-allelic homologous recombination and retroposition contributed to the expansion of this multigene family. Together, these findings lay a foundation for functional analysis of these receptors in both neurobiological and evolutionary studies. Furthermore, this work identifies novel targets for manipulating chemosensory-driven behaviours of agricultural pests and disease vectors.


Zdroje

1. GereauRW

SwansonGT

2008 The Glutamate Receptors Totowa, N.J. Humana Press xi, 576

2. SobolevskyAI

RosconiMP

GouauxE

2009 X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462 745 756

3. JinR

SinghSK

GuS

FurukawaH

SobolevskyAI

2009 Crystal structure and association behaviour of the GluR2 amino-terminal domain. Embo J 28 1812 1823

4. ArmstrongN

SunY

ChenGQ

GouauxE

1998 Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395 913 917

5. KunerT

SeeburgPH

GuyHR

2003 A common architecture for K+ channels and ionotropic glutamate receptors? Trends Neurosci 26 27 32

6. MayerML

ArmstrongN

2004 Structure and function of glutamate receptor ion channels. Annu Rev Physiol 66 161 181

7. TikhonovDB

MagazanikLG

2009 Origin and molecular evolution of ionotropic glutamate receptors. Neurosci Behav Physiol 39 763 773

8. MorozLL

EdwardsJR

PuthanveettilSV

KohnAB

HaT

2006 Neuronal transcriptome of aplysia: neuronal compartments and circuitry. Cell 127 1453 1467

9. BrockiePJ

MadsenDM

ZhengY

MellemJ

MaricqAV

2001 Differential expression of glutamate receptor subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC-42. J Neurosci 21 1510 1522

10. LittletonJT

GanetzkyB

2000 Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron 26 35 43

11. ChenGQ

CuiC

MayerML

GouauxE

1999 Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402 817 821

12. LamHM

ChiuJ

HsiehMH

MeiselL

OliveiraIC

1998 Glutamate-receptor genes in plants. Nature 396 125 126

13. ChiuJC

BrennerED

DeSalleR

NitabachMN

HolmesTC

2002 Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana. Mol Biol Evol 19 1066 1082

14. QiZ

StephensNR

SpaldingEP

2006 Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant Physiol 142 963 971

15. BentonR

VanniceKS

Gomez-DiazC

VosshallLB

2009 Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136 149 162

16. VosshallLB

StockerRF

2007 Molecular Architecture of Smell and Taste in Drosophila. Annu Rev Neurosci 30 505 533

17. FinnRD

TateJ

MistryJ

CoggillPC

SammutSJ

2008 The Pfam protein families database. Nucleic Acids Res 36 D281 288

18. SakaryaO

ArmstrongKA

AdamskaM

AdamskiM

WangIF

2007 A post-synaptic scaffold at the origin of the animal kingdom. PLoS One 2 e506 10.1371/journal.pone.0000506

19. WiegmannBM

TrautweinMD

KimJW

CasselBK

BertoneMA

2009 Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biol 7 34

20. HedgesSB

DudleyJ

KumarS

2006 TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22 2971 2972

21. CumminsSF

ErpenbeckD

ZouZ

ClaudianosC

MorozLL

2009 Candidate chemoreceptor subfamilies differentially expressed in the chemosensory organs of the mollusc Aplysia. BMC Biol 7 28

22. ElliottCJ

SussweinAJ

2002 Comparative neuroethology of feeding control in molluscs. J Exp Biol 205 877 896

23. PrestonRJ

LeeRM

1973 Feeding behavior in Aplysia californica: role of chemical and tactile stimuli. J Comp Physiol Psychol 82 368 381

24. HollinsB

HardinD

GimelbrantAA

McClintockTS

2003 Olfactory-enriched transcripts are cell-specific markers in the lobster olfactory organ. J Comp Neurol 455 125 138

25. StepanyanR

HollinsB

BrockSE

McClintockTS

2004 Primary culture of lobster (Homarus americanus) olfactory sensory neurons. Chem Senses 29 179 187

26. AlbertsonDG

ThomsonJN

1976 The pharynx of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 275 299 325

27. ScottK

BradyRJr

CravchikA

MorozovP

RzhetskyA

2001 A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104 661 673

28. ClynePJ

WarrCG

CarlsonJR

2000 Candidate Taste Receptors in Drosophila. Science 287 1830 1834

29. BrandAH

PerrimonN

1993 Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118 401 415

30. BischofJ

MaedaRK

HedigerM

KarchF

BaslerK

2007 An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A 104 3312 3317

31. MontellC

2009 A taste of the Drosophila gustatory receptors. Curr Opin Neurobiol 19 345 353

32. ClarkAG

EisenMB

SmithDR

BergmanCM

OliverB

2007 Evolution of genes and genomes on the Drosophila phylogeny. Nature 450 203 218

33. RichardsS

LiuY

BettencourtBR

HradeckyP

LetovskyS

2005 Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. Genome Res 15 1 18

34. RussoCA

TakezakiN

NeiM

1995 Molecular phylogeny and divergence times of drosophilid species. Mol Biol Evol 12 391 404

35. GauntMW

MilesMA

2002 An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol Biol Evol 19 748 761

36. McDermottSR

KlimanRM

2008 Estimation of isolation times of the island species in the Drosophila simulans complex from multilocus DNA sequence data. PLoS One 3 e2442 10.1371/journal.pone.0002442

37. HarrisonPM

MilburnD

ZhangZ

BertoneP

GersteinM

2003 Identification of pseudogenes in the Drosophila melanogaster genome. Nucleic Acids Res 31 1033 1037

38. PetrovDA

ChaoYC

StephensonEC

HartlDL

1998 Pseudogene evolution in Drosophila suggests a high rate of DNA loss. Mol Biol Evol 15 1562 1567

39. McBrideCS

ArguelloJR

O'MearaBC

2007 Five Drosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics 177 1395 1416

40. PowellJR

1997 Progress and prospects in evolutionary biology: the Drosophila model. Oxford University Press

41. KaessmannH

VinckenboschN

LongM

2009 RNA-based gene duplication: mechanistic and evolutionary insights. Nat Rev Genet 10 19 31

42. Coulombe-HuntingtonJ

MajewskiJ

2007 Intron loss and gain in Drosophila. Mol Biol Evol 24 2842 2850

43. KooninEV

MakarovaKS

AravindL

2001 Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55 709 742

44. ChiuJ

DeSalleR

LamHM

MeiselL

CoruzziG

1999 Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Mol Biol Evol 16 826 838

45. ShahamS

2009 Chemosensory organs as models of neuronal synapses. Nat Rev Neurosci

46. NeiM

NiimuraY

NozawaM

2008 The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 9 951 963

47. ParmleyJL

UrrutiaAO

PotrzebowskiL

KaessmannH

HurstLD

2007 Splicing and the evolution of proteins in mammals. PLoS Biol 5 e14 10.1371/journal.pbio.0050014

48. NeiM

RooneyAP

2005 Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39 121 152

49. Sanchez-GraciaA

VieiraFG

RozasJ

2009 Molecular evolution of the major chemosensory gene families in insects. Heredity 103 208 216

50. GrandisonRC

PiperMD

PartridgeL

2009 Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462 1061 1064

51. ShiraishiA

KuwabaraM

1970 The effects of amino acids on the labellar hair chemosensory cells of the fly. J Gen Physiol 56 768 782

52. ChikenS

KuwasawaK

KurokawaM

OhsugaK

2001 Amino acid-induced reflexes and their neural pathways in an opisthobranch mollusc Pleurobranchaea japonica. Zoological Science 18 456 473

53. BurgessMF

DerbyCD

1997 Two novel types of L-glutamate receptors with affinities for NMDA and L-cysteine in the olfactory organ of the Caribbean spiny lobster Panulirus argus. Brain Res 771 292 304

54. BentonR

SachseS

MichnickSW

VosshallLB

2006 Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4 e20 10.1371/journal.pbio.0040020

55. LarssonMC

DomingosAI

JonesWD

ChiappeME

AmreinH

2004 Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43 703 714

56. RobertsonHM

WarrCG

CarlsonJR

2003 Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci U S A 100 Suppl 2 14537 14542

57. JonesWD

NguyenTA

KlossB

LeeKJ

VosshallLB

2005 Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr Biol 15 R119 121

58. Penalva-AranaDC

LynchM

RobertsonHM

2009 The chemoreceptor genes of the waterflea Daphnia pulex: many Grs but no Ors. BMC Evol Biol 9 79

59. EdwardsSL

CharlieNK

MilfortMC

BrownBS

GravlinCN

2008 A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biol 6 e198 10.1371/journal.pbio.0060198

60. MorescoJJ

KoelleMR

2004 Activation of EGL-47, a Galphao-coupled receptor, inhibits function of hermaphrodite-specific motor neurons to regulate Caenorhabditis elegans egg-laying behavior. J Neurosci 24 8522 8530

61. ReboraM

PiersantiS

GainoE

2009 The antennal sensilla of adult mayflies: Rhithrogena semicolorata as a case study. Micron 40 571 576

62. YaoCA

IgnellR

CarlsonJR

2005 Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. J Neurosci 25 8359 8367

63. MarkowTA

O'GradyPM

2007 Drosophila biology in the genomic age. Genetics 177 1269 1276

64. StensmyrMC

2009 Drosophila sechellia as a model in chemosensory neuroecology. Ann N Y Acad Sci 1170 468 475

65. JonesCD

2005 The genetics of adaptation in Drosophila sechellia. Genetica 123 137 145

66. ZouDJ

CheslerA

FiresteinS

2009 How the olfactory bulb got its glomeruli: a just so story? Nat Rev Neurosci 10 611 618

67. StrausfeldNJ

HildebrandJG

1999 Olfactory systems: common design, uncommon origins? Curr Opin Neurobiol 9 634 639

68. BentonR

2006 On the ORigin of smell: odorant receptors in insects. Cell Mol Life Sci 63 1579 1585

69. EddySR

1998 Profile hidden Markov models. Bioinformatics 14 755 763

70. BirneyE

ClampM

DurbinR

2004 GeneWise and Genomewise. Genome Res 14 988 995

71. KroghA

LarssonB

von HeijneG

SonnhammerEL

2001 Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305 567 580

72. BendtsenJD

NielsenH

von HeijneG

BrunakS

2004 Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340 783 795

73. DoCB

MahabhashyamMS

BrudnoM

BatzoglouS

2005 ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res 15 330 340

74. WaterhouseAM

ProcterJB

MartinDM

ClampM

BartonGJ

2009 Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25 1189 1191

75. AbascalF

ZardoyaR

PosadaD

2005 ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21 2104 2105

76. GuindonS

GascuelO

2003 A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52 696 704

77. StamatakisA

LudwigT

MeierH

2005 RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21 456 463

78. MaddisonWP

MaddisonDR

2009 Mesquite: A modular system for evolutionary analysis. In: http://mesquiteproject.org, editor. 2.6 ed

79. LetunicI

BorkP

2007 Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23 127 128

80. EdgarRC

2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32 1792 1797

81. CollingridgeGL

OlsenRW

PetersJ

SpeddingM

2009 A nomenclature for ligand-gated ion channels. Neuropharmacology 56 2 5

82. HahnMW

De BieT

StajichJE

NguyenC

CristianiniN

2005 Estimating the tempo and mode of gene family evolution from comparative genomic data. Genome Research 15 1153 1160

83. De BieT

CristianiniN

DemuthJP

HahnMW

2006 CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22 1269 1271

84. TamuraK

SubramanianS

KumarS

2004 Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Molecular Biology and Evolution 21 36 44

85. VieiraFG

Sanchez-GraciaA

RozasJ

2007 Comparative genomic analysis of the odorant-binding protein family in 12 Drosophila genomes: purifying selection and birth-and-death evolution. Genome Biology 8

86. YangZH

1997 PAML: a program package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences 13 555 556

87. BrawandD

WahliW

KaessmannH

2008 Loss of egg yolk genes in mammals and the origin of lactation and placentation. PLoS Biol 6 e63 10.1371/journal.pbio.0060063

88. MarksteinM

PitsouliC

VillaltaC

CelnikerSE

PerrimonN

2008 Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat Genet 40 476 483

89. LeeT

LuoL

1999 Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22 451 461

90. CumminsSF

LeblancL

DegnanBM

NagleGT

2009 Molecular identification of candidate chemoreceptor genes and signal transduction components in the sensory epithelium of Aplysia. J Exp Biol 212 2037 2044

91. LivingstoneCD

BartonGJ

1993 Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation. Comput Appl Biosci 9 745 756

92. MedinaM

CollinsTM

WalshPJ

2001 mtDNA ribosomal gene phylogeny of sea hares in the genus Aplysia (Gastropoda, Opisthobranchia, Anaspidea): implications for comparative neurobiology. Syst Biol 50 676 688

93. SchaefferSW

BhutkarA

McAllisterBF

MatsudaM

MatzkinLM

2008 Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps. Genetics 179 1601 1655

94. KokoevaMV

StorchKF

KleinC

OesterheltD

2002 A novel mode of sensory transduction in archaea: binding protein-mediated chemotaxis towards osmoprotectants and amino acids. Embo J 21 2312 2322

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#