A Model for Damage Load and Its Implications for the Evolution of Bacterial Aging
Deleterious mutations appearing in a population increase in frequency until stopped by natural selection. The ensuing equilibrium creates a stable frequency of deleterious mutations or the mutational load. Here I develop the comparable concept of a damage load, which is caused by harmful non-heritable changes to the phenotype. A damage load also ensues when the increase of damage is opposed by selection. The presence of a damage load favors the evolution of asymmetrical transmission of damage by a mother to her daughters. The asymmetry is beneficial because it increases fitness variance, but it also leads to aging or senescence. A mathematical model based on microbes reveals that a cell lineage dividing symmetrically is immortal if lifetime damage rates do not exceed a threshold. The evolution of asymmetry allows the lineage to persist above the threshold, but the lineage becomes mortal. In microbes with low genomic mutation rates, it is likely that the damage load is much greater than the mutational load. In metazoans with higher genomic mutation rates, the damage and the mutational load could be of the same magnitude. A fit of the model to experimental data shows that Escherichia coli cells experience a damage rate that is below the threshold and are immortal under the conditions examined. The model estimates the asymmetry level of E. coli to be low but sufficient for persisting at higher damage rates. The model also predicts that increasing asymmetry results in diminishing fitness returns, which may explain why the bacterium has not evolved higher asymmetry.
Vyšlo v časopise:
A Model for Damage Load and Its Implications for the Evolution of Bacterial Aging. PLoS Genet 6(8): e32767. doi:10.1371/journal.pgen.1001076
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001076
Souhrn
Deleterious mutations appearing in a population increase in frequency until stopped by natural selection. The ensuing equilibrium creates a stable frequency of deleterious mutations or the mutational load. Here I develop the comparable concept of a damage load, which is caused by harmful non-heritable changes to the phenotype. A damage load also ensues when the increase of damage is opposed by selection. The presence of a damage load favors the evolution of asymmetrical transmission of damage by a mother to her daughters. The asymmetry is beneficial because it increases fitness variance, but it also leads to aging or senescence. A mathematical model based on microbes reveals that a cell lineage dividing symmetrically is immortal if lifetime damage rates do not exceed a threshold. The evolution of asymmetry allows the lineage to persist above the threshold, but the lineage becomes mortal. In microbes with low genomic mutation rates, it is likely that the damage load is much greater than the mutational load. In metazoans with higher genomic mutation rates, the damage and the mutational load could be of the same magnitude. A fit of the model to experimental data shows that Escherichia coli cells experience a damage rate that is below the threshold and are immortal under the conditions examined. The model estimates the asymmetry level of E. coli to be low but sufficient for persisting at higher damage rates. The model also predicts that increasing asymmetry results in diminishing fitness returns, which may explain why the bacterium has not evolved higher asymmetry.
Zdroje
1. HaldaneJBS
1937 The Effect of Variation of Fitness. The American Naturalist 71 337 349
2. KondrashovAS
1993 Classification of Hypotheses on the Advantage of Amphimixis. Journal of Heredity 84 372 387
3. MullerHJ
1950 Our Load of Mutations. American Journal of Human Genetics 2 111 176
4. CrowJF
1958 Some possibilities for measuring -selection intensities in man. Human Biol 30 1 13
5. KimuraM
MaruyamaT
1966 Mutational Load with Epistatic Gene Interactions in Fitness. Genetics 54 1337 1351
6. OhtaT
1973 Slightly Deleterious Mutant Substitutions in Evolution. Nature 246 96 98
7. CharlesworthB
CharlesworthD
1998 Some evolutionary consequences of deleterious mutations. Genetica 103 3 19
8. AckermannM
ChaoL
BergstromCT
DoebeliM
2007 On the evolutionary origin of aging. Aging Cell 6 235 244
9. EvansSN
SteinsaltzD
2007 Damage segregation at fissioning may increase growth rates: A superprocess model. Theoretical Population Biology 71 473 490
10. WatveM
ParabS
JogdandP
KeniS
2006 Aging may be a conditional strategic choice and not an inevitable outcome for bacteria. Proc Natl Acad Sci U S A 103 14831 14835
11. ErjavecN
CvijovicM
KlippE
NystromT
2008 Selective benefits of damage partitioning in unicellular systems and its effects on aging. Proc Natl Acad Sci U S A 105 18764 18769
12. AckermannM
StearnsSC
JenalU
2003 Senescence in a bacterium with asymmetric division. Science 300 1920 1920
13. LindnerAB
MaddenR
DemarezA
StewartEJ
TaddeiF
2008 Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc Natl Acad Sci U S A 105 3076 3081
14. StewartEJ
MaddenR
PaulG
TaddeiF
2005 Aging and death in an organism that reproduces by morphologically symmetric division. Plos Biology 3 e45 doi:10.1371/journal.pbio.0030045
15. BoyeE
NordstromK
2003 Coupling the cell cycle to cell growth - A look at the parameters that regulate cell-cycle events. Embo Reports 4 757 760
16. VinellaD
DariR
1995 Overview of Controls in the Escherichia-Coli Cell-Cycle. Bioessays 17 527 536
17. PondSLK
FrostSDW
MuseSV
2005 HyPhy: hypothesis testing using phylogenies. Bioinformatics 21 676 679
18. O'DonaldP
1968 Measuring the intensity of natural selection. Nature 220 197 198
19. KirkwoodTB
2005 Asymmetry and the origins of ageing. Mech Ageing Dev 126 533 534
20. FerberD
2005 Microbiology. Immortality dies as bacteria show their age. Science 307 656
21. NystromT
2002 Aging in bacteria. Curr Opin Microbiol 5 596 601
22. WoldringhCL
2005 Is Escherichia coli getting old? Bioessays 27 770 774
23. StewartE
TaddeiF
2005 Aging in Esherichia coli: signals in the noise. Bioessays 27 983
24. CharnovEL
1976 Optimal Foraging, Marginal Value Theorem. Theoretical Population Biology 9 129 136
25. GrossL
2007 Paradox Resolved? The Strange Case of the Radiation-Resistant Bacteria. PLoS Biology 5 e108 doi:10.1371/journal.pbio.0050108
26. LambethJD
2004 NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4 181 189
27. ParkB
NizetV
LiuGY
2008 Role of Staphylococcus aureus catalase in niche competition against Streptococcus pneumoniae. J Bacteriol 190 2275 2278
28. DukanS
FarewellA
BallesterosM
TaddeiF
RadmanM
2000 Protein oxidation in response to increased transcriptional or translational errors. Proc Natl Acad Sci U S A 97 5746 5749
29. DokeN
MiuraY
SanchezLM
ParkHJ
NoritakeT
1996 The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defence–a review. Gene 179 45 51
30. DesnuesB
CunyC
GregoriG
DukanS
AguilaniuH
2003 Differential oxidative damage and expression of stress defence regulons in culturable and non-culturable Escherichia coli cells. EMBO Rep 4 400 404
31. KirkwoodTB
2005 Understanding the odd science of aging. Cell 120 437 447
32. TurkePW
2008 Williams's theory of the evolution of senescence: Still useful at fifty. Quarterly Review of Biology 83 243 256
33. DrakeJW
CharlesworthB
CharlesworthD
CrowJF
1998 Rates of spontaneous mutation. Genetics 148 1667 1686
34. MayRM
1976 Simple Mathematical-Models with Very Complicated Dynamics. Nature 261 459 467
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 8
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Identification of the Bovine Arachnomelia Mutation by Massively Parallel Sequencing Implicates Sulfite Oxidase (SUOX) in Bone Development
- Common Inherited Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits
- A Model for Damage Load and Its Implications for the Evolution of Bacterial Aging
- Did Genetic Drift Drive Increases in Genome Complexity?