Dynamic Chromatin Organization during Foregut Development Mediated by the Organ Selector Gene PHA-4/FoxA
Central regulators of cell fate, or selector genes, establish the identity of cells by direct regulation of large cohorts of genes. In Caenorhabditis elegans, foregut (or pharynx) identity relies on the FoxA transcription factor PHA-4, which activates different sets of target genes at various times and in diverse cellular environments. An outstanding question is how PHA-4 distinguishes between target genes for appropriate transcriptional control. We have used the Nuclear Spot Assay and GFP reporters to examine PHA-4 interactions with target promoters in living embryos and with single cell resolution. While PHA-4 was found throughout the digestive tract, binding and activation of pharyngeally expressed promoters was restricted to a subset of pharyngeal cells and excluded from the intestine. An RNAi screen of candidate nuclear factors identified emerin (emr-1) as a negative regulator of PHA-4 binding within the pharynx, but emr-1 did not modulate PHA-4 binding in the intestine. Upon promoter association, PHA-4 induced large-scale chromatin de-compaction, which, we hypothesize, may facilitate promoter access and productive transcription. Our results reveal two tiers of PHA-4 regulation. PHA-4 binding is prohibited in intestinal cells, preventing target gene expression in that organ. PHA-4 binding within the pharynx is limited by the nuclear lamina component EMR-1/emerin. The data suggest that association of PHA-4 with its targets is a regulated step that contributes to promoter selectivity during organ formation. We speculate that global re-organization of chromatin architecture upon PHA-4 binding promotes competence of pharyngeal gene transcription and, by extension, foregut development.
Vyšlo v časopise:
Dynamic Chromatin Organization during Foregut Development Mediated by the Organ Selector Gene PHA-4/FoxA. PLoS Genet 6(8): e32767. doi:10.1371/journal.pgen.1001060
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001060
Souhrn
Central regulators of cell fate, or selector genes, establish the identity of cells by direct regulation of large cohorts of genes. In Caenorhabditis elegans, foregut (or pharynx) identity relies on the FoxA transcription factor PHA-4, which activates different sets of target genes at various times and in diverse cellular environments. An outstanding question is how PHA-4 distinguishes between target genes for appropriate transcriptional control. We have used the Nuclear Spot Assay and GFP reporters to examine PHA-4 interactions with target promoters in living embryos and with single cell resolution. While PHA-4 was found throughout the digestive tract, binding and activation of pharyngeally expressed promoters was restricted to a subset of pharyngeal cells and excluded from the intestine. An RNAi screen of candidate nuclear factors identified emerin (emr-1) as a negative regulator of PHA-4 binding within the pharynx, but emr-1 did not modulate PHA-4 binding in the intestine. Upon promoter association, PHA-4 induced large-scale chromatin de-compaction, which, we hypothesize, may facilitate promoter access and productive transcription. Our results reveal two tiers of PHA-4 regulation. PHA-4 binding is prohibited in intestinal cells, preventing target gene expression in that organ. PHA-4 binding within the pharynx is limited by the nuclear lamina component EMR-1/emerin. The data suggest that association of PHA-4 with its targets is a regulated step that contributes to promoter selectivity during organ formation. We speculate that global re-organization of chromatin architecture upon PHA-4 binding promotes competence of pharyngeal gene transcription and, by extension, foregut development.
Zdroje
1. MannRS
CarrollSB
2002 Molecular mechanisms of selector gene function and evolution. Curr Opin Genet Dev 12 592 600
2. GaudetJ
MangoSE
2002 Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4. Science 295 821 825
3. FurlongEE
AndersenEC
NullB
WhiteKP
ScottMP
2001 Patterns of gene expression during Drosophila mesoderm development. Science 293 1629 1633
4. TapscottSJ
2005 The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 132 2685 2695
5. LiangZ
BigginMD
1998 Eve and ftz regulate a wide array of genes in blastoderm embryos: the selector homeoproteins directly or indirectly regulate most genes in Drosophila. Development 125 4471 4482
6. ZeitlingerJ
ZinzenRP
StarkA
KellisM
ZhangH
2007 Whole-genome ChIP-chip analysis of Dorsal, Twist, and Snail suggests integration of diverse patterning processes in the Drosophila embryo. Genes Dev 21 385 390
7. SandmannT
GirardotC
BrehmeM
TongprasitW
StolcV
2007 A core transcriptional network for early mesoderm development in Drosophila melanogaster. Genes Dev 21 436 449
8. CaoY
YaoZ
SarkarD
LawrenceM
SanchezGJ
2010 Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Dev Cell 18 662 674
9. HornerMA
QuintinS
DomeierME
KimbleJ
LabouesseM
1998 pha-4, an HNF-3 homologue, specifies pharyngeal organ identity in Caenorhabditis elegans. Genes Dev 12 1947 1952
10. KalbJM
LauKK
GoszczynskiB
FukushigeT
MoonsD
1998 pha-4 is Ce-fkh-1, a fork head/HNF-3alpha,beta,gamma homolog that functions in organogenesis of the C. elegans pharynx. Development 125 2171 2180
11. KieferJC
SmithPA
MangoSE
2007 PHA-4/FoxA cooperates with TAM-1/TRIM to regulate cell fate restriction in the C. elegans foregut. Dev Biol 303 611 624
12. MangoSE
LambieEJ
KimbleJ
1994 The pha-4 gene is required to generate the pharyngeal primordium of Caenorhabditis elegans. Development 120 3019 3031
13. AoW
GaudetJ
KentWJ
MuttumuS
MangoSE
2004 Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR. Science 305 1743 1746
14. ChenD
RiddleDL
2008 Function of the PHA-4/FOXA transcription factor during C. elegans post-embryonic development. BMC Dev Biol 8 26
15. UpdikeDL
MangoSE
2007 Genetic suppressors of Caenorhabditis elegans pha-4/FoxA identify the predicted AAA helicase ruvb-1/RuvB. Genetics 177 819 833
16. PanowskiSH
WolffS
AguilaniuH
DurieuxJ
DillinA
2007 PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447 550 555
17. SheafferKL
UpdikeDL
MangoSE
2008 The Target of Rapamycin pathway antagonizes pha-4/FoxA to control development and aging. Curr Biol 18 1355 1364
18. GaudetJ
MuttumuS
HornerM
MangoSE
2004 Whole-genome analysis of temporal gene expression during foregut development. PLoS Biol 2 e352 doi:10.1371/journal.pbio.0020352
19. ZhongM
NiuW
LuZJ
SarovM
MurrayJI
2010 Genome-wide identification of binding sites defines distinct functions for Caenorhabditis elegans PHA-4/FOXA in development and environmental response. PLoS Genet 6 e1000848 doi:10.1371/journal.pgen.1000848
20. ThatcherJD
HaunC
OkkemaPG
1999 The DAF-3 Smad binds DNA and represses gene expression in the Caenorhabditis elegans pharynx. Development 126 97 107
21. ThatcherJD
FernandezAP
Beaster-JonesL
HaunC
OkkemaPG
2001 The Caenorhabditis elegans peb-1 gene encodes a novel DNA-binding protein involved in morphogenesis of the pharynx, vulva, and hindgut. Dev Biol 229 480 493
22. DeplanckeB
MukhopadhyayA
AoW
ElewaAM
GroveCA
2006 A gene-centered C. elegans protein-DNA interaction network. Cell 125 1193 1205
23. OkkemaPG
HaE
HaunC
ChenW
FireA
1997 The Caenorhabditis elegans NK-2 homeobox gene ceh-22 activates pharyngeal muscle gene expression in combination with pha-1 and is required for normal pharyngeal development. Development 124 3965 3973
24. RaharjoI
GaudetJ
2007 Gland-specific expression of C. elegans hlh-6 requires the combinatorial action of three distinct promoter elements. Dev Biol 302 295 308
25. RasmussenJP
EnglishK
TenlenJR
PriessJR
2008 Notch signaling and morphogenesis of single-cell tubes in the C. elegans digestive tract. Dev Cell 14 559 569
26. CasolariJM
BrownCR
KomiliS
WestJ
HieronymusH
2004 Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117 427 439
27. TaddeiA
Van HouweG
HedigerF
KalckV
CubizollesF
2006 Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441 774 778
28. BricknerJH
WalterP
2004 Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol 2 e342 doi:10.1371/journal.pbio.0020342
29. CabalGG
GenovesioA
Rodriguez-NavarroS
ZimmerC
GadalO
2006 SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441 770 773
30. DieppoisG
IglesiasN
StutzF
2006 Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes. Mol Cell Biol 26 7858 7870
31. MargalitA
NeufeldE
FeinsteinN
WilsonKL
PodbilewiczB
2007 Barrier to autointegration factor blocks premature cell fusion and maintains adult muscle integrity in C. elegans. J Cell Biol 178 661 673
32. NiliE
CojocaruGS
KalmaY
GinsbergD
CopelandNG
2001 Nuclear membrane protein LAP2beta mediates transcriptional repression alone and together with its binding partner GCL (germ-cell-less). J Cell Sci 114 3297 3307
33. SomechR
ShaklaiS
GellerO
AmariglioN
SimonAJ
2005 The nuclear-envelope protein and transcriptional repressor LAP2beta interacts with HDAC3 at the nuclear periphery, and induces histone H4 deacetylation. J Cell Sci 118 4017 4025
34. LiuJ
Rolef Ben-ShaharT
RiemerD
TreininM
SpannP
2000 Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes. Mol Biol Cell 11 3937 3947
35. DechatT
PfleghaarK
SenguptaK
ShimiT
ShumakerDK
2008 Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22 832 853
36. GruenbaumY
LeeKK
LiuJ
CohenM
WilsonKL
2002 The expression, lamin-dependent localization and RNAi depletion phenotype for emerin in C. elegans. J Cell Sci 115 923 929
37. SproulD
GilbertN
BickmoreWA
2005 The role of chromatin structure in regulating the expression of clustered genes. Nat Rev Genet 6 775 781
38. FinlanLE
SproulD
ThomsonI
BoyleS
KerrE
2008 Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet 4 e1000039 doi:10.1371/journal.pgen.1000039
39. ReddyKL
ZulloJM
BertolinoE
SinghH
2008 Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452 243 247
40. KumaranRI
SpectorDL
2008 A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol 180 51 65
41. RagoczyT
BenderMA
TellingA
ByronR
GroudineM
2006 The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev 20 1447 1457
42. RiemerD
DodemontH
WeberK
1993 A nuclear lamin of the nematode Caenorhabditis elegans with unusual structural features; cDNA cloning and gene organization. Eur J Cell Biol 62 214 223
43. LiuJ
LeeKK
Segura-TottenM
NeufeldE
WilsonKL
2003 MAN1 and emerin have overlapping function(s) essential for chromosome segregation and cell division in Caenorhabditis elegans. Proc Natl Acad Sci U S A 100 4598 4603
44. OegemaK
HymanAA
2006 Cell division. WormBook 1 40
45. LeeKK
GruenbaumY
SpannP
LiuJ
WilsonKL
2000 C. elegans nuclear envelope proteins emerin, MAN1, lamin, and nucleoporins reveal unique timing of nuclear envelope breakdown during mitosis. Mol Biol Cell 11 3089 3099
46. MargalitA
Segura-TottenM
GruenbaumY
WilsonKL
2005 Barrier-to-autointegration factor is required to segregate and enclose chromosomes within the nuclear envelope and assemble the nuclear lamina. Proc Natl Acad Sci U S A 102 3290 3295
47. ZhengR
GhirlandoR
LeeMS
MizuuchiK
KrauseM
2000 Barrier-to-autointegration factor (BAF) bridges DNA in a discrete, higher-order nucleoprotein complex. Proc Natl Acad Sci U S A 97 8997 9002
48. YuzyukT
FakhouriTH
KieferJ
MangoSE
2009 The polycomb complex protein mes-2/E(z) promotes the transition from developmental plasticity to differentiation in C. elegans embryos. Dev Cell 16 699 710
49. BelmontAS
StraightAF
1998 In vivo visualization of chromosomes using lac operator-repressor binding. Trends Cell Biol 8 121 124
50. CarmiI
KopczynskiJB
MeyerBJ
1998 The nuclear hormone receptor SEX-1 is an X-chromosome signal that determines nematode sex. Nature 396 168 173
51. Gonzalez-SerricchioAS
SternbergPW
2006 Visualization of C. elegans transgenic arrays by green fluorescent protein (GFP). BMC Genet 7 36
52. FukushigeT
HendzelMJ
Bazett-JonesDP
McGheeJD
1999 Direct visualization of the elt-2 gut-specific GATA factor binding to a target promoter inside the living Caenorhabditis elegans embryo. Proc Natl Acad Sci U S A 96 11883 11888
53. CirilloLA
LinFR
CuestaI
FriedmanD
JarnikM
2002 Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell 9 279 289
54. LupienM
EeckhouteJ
MeyerCA
WangQ
ZhangY
2008 FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132 958 970
55. SunK
CoicE
ZhouZ
DurrensP
HaberJE
2002 Saccharomyces forkhead protein Fkh1 regulates donor preference during mating-type switching through the recombination enhancer. Genes Dev 16 2085 2096
56. OkkemaPG
KrauseM
2005 Transcriptional regulation. WormBook 1 40
57. EpsteinHF
WaterstonRH
BrennerS
1974 A mutant affecting the heavy chain of myosin in Caenorhabditis elegans. J Mol Biol 90 291 300
58. KaltenbachL
HornerMA
RothmanJH
MangoSE
2000 The TBP-like factor CeTLF is required to activate RNA polymerase II transcription during C. elegans embryogenesis. Mol Cell 6 705 713
59. KellyWG
XuS
MontgomeryMK
FireA
1997 Distinct requirements for somatic and germline expression of a generally expressed Caernorhabditis elegans gene. Genetics 146 227 238
60. EvansTC
2006 Transformation and microinjection. WormBook doi/10.1895/wormbook.1.108.1
61. GualdiR
BossardP
ZhengM
HamadaY
ColemanJR
1996 Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev 10 1670 1682
62. MangoSE
2007 The C. elegans pharynx: a model for organogenesis. WormBook doi/10.1895/wormbook.1.7.1
63. UpdikeDL
MangoSE
2006 Temporal regulation of foregut development by HTZ-1/H2A.Z and PHA-4/FoxA. PLoS Genet 2 e161 doi:10.1371/journal.pgen.0020161
64. ZaretKS
2002 Regulatory phases of early liver development: paradigms of organogenesis. Nat Rev Genet 3 499 512
65. ZaretK
1999 Developmental competence of the gut endoderm: genetic potentiation by GATA and HNF3/fork head proteins. Dev Biol 209 1 10
66. MangoSE
2009 The molecular basis of organ formation: insights from the C. elegans foregut. Annu Rev Cell Dev Biol 25 597 628
67. ChambeyronS
BickmoreWA
2004 Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18 1119 1130
68. WilliamsSK
TylerJK
2007 Transcriptional regulation by chromatin disassembly and reassembly. Curr Opin Genet Dev 17 88 93
69. MullerWG
WalkerD
HagerGL
McNallyJG
2001 Large-scale chromatin decondensation and recondensation regulated by transcription from a natural promoter. J Cell Biol 154 33 48
70. AzzariaM
GoszczynskiB
ChungMA
KalbJM
McGheeJD
1996 A fork head/HNF-3 homolog expressed in the pharynx and intestine of the Caenorhabditis elegans embryo. Developmental Biology 178 289 303
71. TerranovaR
PujolN
FasanoL
DjabaliM
2002 Characterisation of set-1, a conserved PR/SET domain gene in Caenorhabditis elegans. Gene 292 33 41
72. GrishokA
SinskeyJL
SharpPA
2005 Transcriptional silencing of a transgene by RNAi in the soma of C. elegans. Genes Dev 19 683 696
73. AndersenEC
HorvitzHR
2007 Two C. elegans histone methyltransferases repress lin-3 EGF transcription to inhibit vulval development. Development 134 2991 2999
74. BesslerJB
AndersenEC
VilleneuveAM
2010 Differential localization and independent acquisition of the H3K9me2 and H3K9me3 chromatin modifications in the Caenorhabditis elegans adult germ line. PLoS Genet 6 e1000830 doi:10.1371/journal.pgen.1000830
75. GruenbaumY
WilsonKL
HarelA
GoldbergM
CohenM
2000 Review: nuclear lamins—structural proteins with fundamental functions. J Struct Biol 129 313 323
76. SchanerCE
KellyWG
2006 Germline chromatin. WormBook 1 14
77. CarrollJS
LiuXS
BrodskyAS
LiW
MeyerCA
2005 Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122 33 43
78. ErcanS
ReeseJC
WorkmanJL
SimpsonRT
2005 Yeast recombination enhancer is stimulated by transcription activation. Mol Cell Biol 25 7976 7987
79. StinchcombDT
ShawJE
CarrSH
HirshD
1985 Extrachromosomal DNA transformation of Caenorhabditis elegans. Mol Cell Biol 5 3484 3496
80. GruenbaumY
MargalitA
GoldmanRD
ShumakerDK
WilsonKL
2005 The nuclear lamina comes of age. Nat Rev Mol Cell Biol 6 21 31
81. FukushigeT
KrauseM
2005 The myogenic potency of HLH-1 reveals wide-spread developmental plasticity in early C. elegans embryos. Development 132 1795 1805
82. CairnsBR
2007 Chromatin remodeling: insights and intrigue from single-molecule studies. Nat Struct Mol Biol 14 989 996
83. BoegerH
GriesenbeckJ
KornbergRD
2008 Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription. Cell 133 716 726
84. PeteschSJ
LisJT
2008 Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 134 74 84
85. LinR
HillRJ
PriessJR
1998 POP-1 and anterior-posterior fate decisions in C. elegans embryos. Cell 92 229 239
86. KalettaT
SchnabelH
SchnabelR
1997 Binary specification of the embryonic lineage in Caenorhabditis elegans. Nature 390 294 298
87. KorswagenHC
HermanMA
CleversHC
2000 Distinct beta-catenins mediate adhesion and signalling functions in C. elegans. Nature 406 527 532
88. OrkinSH
1992 GATA-binding transcription factors in hematopoietic cells. Blood 80 575 581
89. PedonePV
OmichinskiJG
NonyP
TrainorC
GronenbornAM
1997 The N-terminal fingers of chicken GATA-2 and GATA-3 are independent sequence-specific DNA binding domains. EMBO J 16 2874 2882
90. BrennerS
1974 The genetics of Caenorhabditis elegans. Genetics 77 71 94
91. GriesbeckO
BairdGS
CampbellRE
ZachariasDA
TsienRY
2001 Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276 29188 29194
92. HopeIA
1991 “Promoter trapping” in Caenorhabditis elegans. Development 113 399 408
93. MelloCC
KramerJM
StinchcombD
AmbrosV
1991 Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10 3959 3970
94. KaltenbachLS
UpdikeDL
MangoSE
2005 Contribution of the amino and carboxyl termini for PHA-4/FoxA function in Caenorhabditis elegans. Dev Dyn 234 346 354
95. PrussRM
MirskyR
RaffMC
ThorpeR
DowdingAJ
1981 All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody. Cell 27 419 428
96. StraightAF
BelmontAS
RobinettCC
MurrayAW
1996 GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr Biol 6 1599 1608
97. TimmonsL
CourtDL
FireA
2001 Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263 103 112
98. KamathRS
FraserAG
DongY
PoulinG
DurbinR
2003 Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421 231 237
99. TabaraH
MotohashiT
KoharaY
1996 A multi-well version of in situ hybridization on whole mount embryos of Caenorhabditis elegans. Nucleic Acids Res 24 2119 2124
100. AltunZF
HerndonL.A.
CrockerC.
LintsR.
HallD.H.
2002–2009 WormAtlas http://wwwwormatlasorg
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 8
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Identification of the Bovine Arachnomelia Mutation by Massively Parallel Sequencing Implicates Sulfite Oxidase (SUOX) in Bone Development
- Common Inherited Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits
- A Model for Damage Load and Its Implications for the Evolution of Bacterial Aging
- Did Genetic Drift Drive Increases in Genome Complexity?