An Alpha-Catulin Homologue Controls Neuromuscular Function through Localization of the Dystrophin Complex and BK Channels in
The large conductance, voltage- and calcium-dependent potassium (BK) channel serves as a major negative feedback regulator of calcium-mediated physiological processes and has been implicated in muscle dysfunction and neurological disorders. In addition to membrane depolarization, activation of the BK channel requires a rise in cytosolic calcium. Localization of the BK channel near calcium channels is therefore critical for its function. In a genetic screen designed to isolate novel regulators of the Caenorhabditis elegans BK channel, SLO-1, we identified ctn-1, which encodes an α-catulin homologue with homology to the cytoskeletal proteins α-catenin and vinculin. ctn-1 mutants resemble slo-1 loss-of-function mutants, as well as mutants with a compromised dystrophin complex. We determined that CTN-1 uses two distinct mechanisms to localize SLO-1 in muscles and neurons. In muscles, CTN-1 utilizes the dystrophin complex to localize SLO-1 channels near L-type calcium channels. In neurons, CTN-1 is involved in localizing SLO-1 to a specific domain independent of the dystrophin complex. Our results demonstrate that CTN-1 ensures the localization of SLO-1 within calcium nanodomains, thereby playing a crucial role in muscles and neurons.
Vyšlo v časopise:
An Alpha-Catulin Homologue Controls Neuromuscular Function through Localization of the Dystrophin Complex and BK Channels in. PLoS Genet 6(8): e32767. doi:10.1371/journal.pgen.1001077
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001077
Souhrn
The large conductance, voltage- and calcium-dependent potassium (BK) channel serves as a major negative feedback regulator of calcium-mediated physiological processes and has been implicated in muscle dysfunction and neurological disorders. In addition to membrane depolarization, activation of the BK channel requires a rise in cytosolic calcium. Localization of the BK channel near calcium channels is therefore critical for its function. In a genetic screen designed to isolate novel regulators of the Caenorhabditis elegans BK channel, SLO-1, we identified ctn-1, which encodes an α-catulin homologue with homology to the cytoskeletal proteins α-catenin and vinculin. ctn-1 mutants resemble slo-1 loss-of-function mutants, as well as mutants with a compromised dystrophin complex. We determined that CTN-1 uses two distinct mechanisms to localize SLO-1 in muscles and neurons. In muscles, CTN-1 utilizes the dystrophin complex to localize SLO-1 channels near L-type calcium channels. In neurons, CTN-1 is involved in localizing SLO-1 to a specific domain independent of the dystrophin complex. Our results demonstrate that CTN-1 ensures the localization of SLO-1 within calcium nanodomains, thereby playing a crucial role in muscles and neurons.
Zdroje
1. LaiHC
JanLY
2006 The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci 7 548 562
2. LevitanIB
2006 Signaling protein complexes associated with neuronal ion channels. Nat Neurosci 9 305 310
3. SalkoffL
ButlerA
FerreiraG
SantiC
WeiA
2006 High-conductance potassium channels of the SLO family. Nat Rev Neurosci 7 921 931
4. FaklerB
AdelmanJP
2008 Control of K(Ca) channels by calcium nano/microdomains. Neuron 59 873 881
5. BrennerR
PerezGJ
BonevAD
EckmanDM
KosekJC
2000 Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature 407 870 876
6. LovellPV
McCobbDP
2001 Pituitary control of BK potassium channel function and intrinsic firing properties of adrenal chromaffin cells. J Neurosci 21 3429 3442
7. WernerME
ZvaraP
MeredithAL
AldrichRW
NelsonMT
2005 Erectile dysfunction in mice lacking the large-conductance calcium-activated potassium (BK) channel. J Physiol 567 545 556
8. DuW
BautistaJF
YangH
Diez-SampedroA
YouSA
2005 Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 37 733 738
9. ShrutiS
ClemRL
BarthAL
2008 A seizure-induced gain-of-function in BK channels is associated with elevated firing activity in neocortical pyramidal neurons. Neurobiol Dis 30 323 330
10. SchopperleWM
HolmqvistMH
ZhouY
WangJ
WangZ
1998 Slob, a novel protein that interacts with the Slowpoke calcium-dependent potassium channel. Neuron 20 565 573
11. LuR
AliouaA
KumarY
EghbaliM
StefaniE
2006 MaxiK channel partners: physiological impact. J Physiol 570 65 72
12. TianL
ChenL
McClaffertyH
SailerCA
RuthP
2006 A noncanonical SH3 domain binding motif links BK channels to the actin cytoskeleton via the SH3 adapter cortactin. FASEB J 20 2588 2590
13. KimEY
RidgwayLD
DryerSE
2007 Interactions with filamin A stimulate surface expression of large-conductance Ca2+-activated K+ channels in the absence of direct actin binding. Mol Pharmacol 72 622 630
14. ParkSM
LiuG
KubalA
FuryM
CaoL
2004 Direct interaction between BKCa potassium channel and microtubule-associated protein 1A. FEBS Lett 570 143 148
15. WangZW
SaifeeO
NonetML
SalkoffL
2001 SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. Neuron 32 867 881
16. DaviesAG
Pierce-ShimomuraJT
KimH
VanHovenMK
ThieleTR
2003 A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115 655 666
17. Carre-PierratM
GrisoniK
GieselerK
MariolMC
MartinE
2006 The SLO-1 BK channel of Caenorhabditis elegans is critical for muscle function and is involved in dystrophin-dependent muscle dystrophy. J Mol Biol 358 387 395
18. KimH
RogersMJ
RichmondJE
McIntireSL
2004 SNF-6 is an acetylcholine transporter interacting with the dystrophin complex in Caenorhabditis elegans. Nature 430 891 896
19. BessouC
GiugiaJB
FranksCJ
Holden-DyeL
SegalatL
1998 Mutations in the Caenorhabditis elegans dystrophin-like gene dys-1 lead to hyperactivity and suggest a link with cholinergic transmission. Neurogenetics 2 61 72
20. GieselerK
BessouC
SegalatL
1999 Dystrobrevin- and dystrophin-like mutants display similar phenotypes in the nematode Caenorhabditis elegans. Neurogenetics 2 87 90
21. KimH
Pierce-ShimomuraJT
OhHJ
JohnsonBE
GoodmanMB
2009 The dystrophin complex controls bk channel localization and muscle activity in Caenorhabditis elegans. PLoS Genet 5 e1000780 doi:10.1371/journal.pgen.1000780
22. AldertonJM
SteinhardtRA
2000 Calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes. J Biol Chem 275 9452 9460
23. JanssensB
StaesK
van RoyF
1999 Human alpha-catulin, a novel alpha-catenin-like molecule with conserved genomic structure, but deviating alternative splicing. Biochim Biophys Acta 1447 341 347
24. BarsteadRJ
WaterstonRH
1989 The basal component of the nematode dense-body is vinculin. J Biol Chem 264 10177 10185
25. CostaM
RaichW
AgbunagC
LeungB
HardinJ
1998 A putative catenin-cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J Cell Biol 141 297 308
26. WiesnerC
WinsauerG
ReschU
HoethM
SchmidJA
2008 Alpha-catulin, a Rho signalling component, can regulate NF-kappaB through binding to IKK-beta, and confers resistance to apoptosis. Oncogene 27 2159 2169
27. Sadoulet-PuccioHM
RajalaM
KunkelLM
1997 Dystrobrevin and dystrophin: an interaction through coiled-coil motifs. Proc Natl Acad Sci U S A 94 12413 12418
28. HuH
ShaoLR
ChavoshyS
GuN
TriebM
2001 Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J Neurosci 21 9585 9597
29. SailerCA
KaufmannWA
KoglerM
ChenL
SausbierU
2006 Immunolocalization of BK channels in hippocampal pyramidal neurons. Eur J Neurosci 24 442 454
30. KaufmannWA
FerragutiF
FukazawaY
KasugaiY
ShigemotoR
2009 Large-conductance calcium-activated potassium channels in purkinje cell plasma membranes are clustered at sites of hypolemmal microdomains. J Comp Neurol 515 215 230
31. LiewaldJF
BraunerM
StephensGJ
BouhoursM
SchultheisC
2008 Optogenetic analysis of synaptic function. Nat Methods 5 895 902
32. GieselerK
MariolMC
BessouC
MigaudM
FranksCJ
2001 Molecular, genetic and physiological characterisation of dystrobrevin-like (dyb-1) mutants of Caenorhabditis elegans. J Mol Biol 307 107 117
33. EdgertonJR
ReinhartPH
2003 Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function. J Physiol 548 53 69
34. PrakriyaM
LingleCJ
1999 BK channel activation by brief depolarizations requires Ca2+ influx through L- and Q-type Ca2+ channels in rat chromaffin cells. J Neurophysiol 81 2267 2278
35. GrachevaEO
HadwigerG
NonetML
RichmondJE
2008 Direct interactions between C. elegans RAB-3 and Rim provide a mechanism to target vesicles to the presynaptic density. Neurosci Lett 444 137 142
36. SahekiY
BargmannCI
2009 Presynaptic CaV2 calcium channel traffic requires CALF-1 and the alpha(2)delta subunit UNC-36. Nat Neurosci 12 1257 1265
37. BiggarWD
KlamutHJ
DemacioPC
StevensDJ
RayPN
2002 Duchenne muscular dystrophy: current knowledge, treatment, and future prospects. Clin Orthop Relat Res 88 106
38. BoisPR
BorgonRA
VonrheinC
IzardT
2005 Structural dynamics of alpha-actinin-vinculin interactions. Mol Cell Biol 25 6112 6122
39. ZieglerWH
LiddingtonRC
CritchleyDR
2006 The structure and regulation of vinculin. Trends Cell Biol 16 453 460
40. ErvastiJM
2003 Costameres: the Achilles' heel of Herculean muscle. J Biol Chem 278 13591 13594
41. AyalonG
DavisJQ
ScotlandPB
BennettV
2008 An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell 135 1189 1200
42. TroemelER
SagastiA
BargmannCI
1999 Lateral signaling mediated by axon contact and calcium entry regulates asymmetric odorant receptor expression in C. elegans. Cell 99 387 398
43. BrennerS
1974 The genetics of Caenorhabditis elegans. Genetics 77 71 94
44. WicksSR
YehRT
GishWR
WaterstonRH
PlasterkRH
2001 Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat Genet 28 160 164
45. ShioiG
ShojiM
NakamuraM
IshiharaT
KatsuraI
2001 Mutations affecting nerve attachment of Caenorhabditis elegans. Genetics 157 1611 1622
46. MelloCC
KramerJM
StinchcombD
AmbrosV
1991 Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. Embo J 10 3959 3970
47. Pierce-ShimomuraJT
ChenBL
MunJJ
HoR
SarkisR
2008 Genetic analysis of crawling and swimming locomotory patterns in C. elegans. Proc Natl Acad Sci U S A 105 20982 20987
48. RichmondJE
2006 Electrophysiological recordings from the neuromuscular junction of C. elegans. WormBook 1 8
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 8
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Identification of the Bovine Arachnomelia Mutation by Massively Parallel Sequencing Implicates Sulfite Oxidase (SUOX) in Bone Development
- Common Inherited Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits
- A Model for Damage Load and Its Implications for the Evolution of Bacterial Aging
- Did Genetic Drift Drive Increases in Genome Complexity?