Disease-Associated Mutations That Alter the RNA Structural Ensemble
Genome-wide association studies (GWAS) often identify disease-associated mutations in intergenic and non-coding regions of the genome. Given the high percentage of the human genome that is transcribed, we postulate that for some observed associations the disease phenotype is caused by a structural rearrangement in a regulatory region of the RNA transcript. To identify such mutations, we have performed a genome-wide analysis of all known disease-associated Single Nucleotide Polymorphisms (SNPs) from the Human Gene Mutation Database (HGMD) that map to the untranslated regions (UTRs) of a gene. Rather than using minimum free energy approaches (e.g. mFold), we use a partition function calculation that takes into consideration the ensemble of possible RNA conformations for a given sequence. We identified in the human genome disease-associated SNPs that significantly alter the global conformation of the UTR to which they map. For six disease-states (Hyperferritinemia Cataract Syndrome, β-Thalassemia, Cartilage-Hair Hypoplasia, Retinoblastoma, Chronic Obstructive Pulmonary Disease (COPD), and Hypertension), we identified multiple SNPs in UTRs that alter the mRNA structural ensemble of the associated genes. Using a Boltzmann sampling procedure for sub-optimal RNA structures, we are able to characterize and visualize the nature of the conformational changes induced by the disease-associated mutations in the structural ensemble. We observe in several cases (specifically the 5′ UTRs of FTL and RB1) SNP–induced conformational changes analogous to those observed in bacterial regulatory Riboswitches when specific ligands bind. We propose that the UTR and SNP combinations we identify constitute a “RiboSNitch,” that is a regulatory RNA in which a specific SNP has a structural consequence that results in a disease phenotype. Our SNPfold algorithm can help identify RiboSNitches by leveraging GWAS data and an analysis of the mRNA structural ensemble.
Vyšlo v časopise:
Disease-Associated Mutations That Alter the RNA Structural Ensemble. PLoS Genet 6(8): e32767. doi:10.1371/journal.pgen.1001074
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001074
Souhrn
Genome-wide association studies (GWAS) often identify disease-associated mutations in intergenic and non-coding regions of the genome. Given the high percentage of the human genome that is transcribed, we postulate that for some observed associations the disease phenotype is caused by a structural rearrangement in a regulatory region of the RNA transcript. To identify such mutations, we have performed a genome-wide analysis of all known disease-associated Single Nucleotide Polymorphisms (SNPs) from the Human Gene Mutation Database (HGMD) that map to the untranslated regions (UTRs) of a gene. Rather than using minimum free energy approaches (e.g. mFold), we use a partition function calculation that takes into consideration the ensemble of possible RNA conformations for a given sequence. We identified in the human genome disease-associated SNPs that significantly alter the global conformation of the UTR to which they map. For six disease-states (Hyperferritinemia Cataract Syndrome, β-Thalassemia, Cartilage-Hair Hypoplasia, Retinoblastoma, Chronic Obstructive Pulmonary Disease (COPD), and Hypertension), we identified multiple SNPs in UTRs that alter the mRNA structural ensemble of the associated genes. Using a Boltzmann sampling procedure for sub-optimal RNA structures, we are able to characterize and visualize the nature of the conformational changes induced by the disease-associated mutations in the structural ensemble. We observe in several cases (specifically the 5′ UTRs of FTL and RB1) SNP–induced conformational changes analogous to those observed in bacterial regulatory Riboswitches when specific ligands bind. We propose that the UTR and SNP combinations we identify constitute a “RiboSNitch,” that is a regulatory RNA in which a specific SNP has a structural consequence that results in a disease phenotype. Our SNPfold algorithm can help identify RiboSNitches by leveraging GWAS data and an analysis of the mRNA structural ensemble.
Zdroje
1. MortonNE
2008 Into the post-HapMap era. Adv Genet 60 727 742
2. MathewCG
2008 New links to the pathogenesis of Crohn disease provided by genome-wide association scans. Nat Rev Genet 9 9 14
3. LeeSH
van der WerfJH
HayesBJ
GoddardME
VisscherPM
2008 Predicting unobserved phenotypes for complex traits from whole-genome SNP data. PLoS Genet 4 e1000231 doi:10.1371/journal.pgen.1000231
4. BenjaminEJ
DupuisJ
LarsonMG
LunettaKL
BoothSL
2007 Genome-wide association with select biomarker traits in the Framingham Heart Study. BMC Med Genet 8 Suppl 1 S11
5. LeeST
ChoiKW
YeoHT
KimJW
KiCS
2008 Identification of an Arg35X mutation in the PDCD10 gene in a patient with cerebral and multiple spinal cavernous malformations. J Neurol Sci 267 177 181
6. WangJ
PitarqueM
Ingelman-SundbergM
2006 3′-UTR polymorphism in the human CYP2A6 gene affects mRNA stability and enzyme expression. Biochem Biophys Res Commun 340 491 497
7. WangD
JohnsonAD
PappAC
KroetzDL
SadeeW
2005 Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet Genomics 15 693 704
8. Kimchi-SarfatyC
OhJM
KimIW
SaunaZE
CalcagnoAM
2007 A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315 525 528
9. GommansWM
TataliasNE
SieCP
DupuisD
VendettiN
2008 Screening of human SNP database identifies recoding sites of A-to-I RNA editing. Rna 14 2074 2085
10. GlinskyGV
2008 SNP-guided microRNA maps (MirMaps) of 16 common human disorders identify a clinically accessible therapy reversing transcriptional aberrations of nuclear import and inflammasome pathways. Cell Cycle 7 3564 3576
11. GlinskyGV
2008 Disease phenocode analysis identifies SNP-guided microRNA maps (MirMaps) associated with human “master” disease genes. Cell Cycle 7 3680 3694
12. NuinoonM
MakarasaraW
MushirodaT
SetianingsihI
WahidiyatPA
2009 A genome-wide association identified the common genetic variants influence disease severity in beta(0)-thalassemia/hemoglobin E. Hum Genet
13. GlinskiiAB
MaJ
MaS
GrantD
LimCU
2009 Identification of intergenic trans-regulatory RNAs containing a disease-linked SNP sequence and targeting cell cycle progression/differentiation pathways in multiple common human disorders. Cell Cycle 8 3925 3942
14. TreutleinJ
CichonS
RidingerM
WodarzN
SoykaM
2009 Genome-wide association study of alcohol dependence. Arch Gen Psychiatry 66 773 784
15. LaederachA
2007 Informatics challenges in structured RNA. Brief Bioinform 8 294 303
16. WangJX
LeeER
MoralesDR
LimJ
BreakerRR
2008 Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell 29 691 702
17. RanaTM
2007 Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8 23 36
18. LeinES
HawrylyczMJ
AoN
AyresM
BensingerA
2007 Genome-wide atlas of gene expression in the adult mouse brain. Nature 445 168 176
19. DohertyEA
DoudnaJA
2000 Ribozyme structures and mechanisms. Annu Rev Biochem 69 597 615
20. TuckerBJ
BreakerRR
2005 Riboswitches as versatile gene control elements. Curr Opin Struct Biol 15 342 348
21. NollerHF
2005 RNA structure: reading the ribosome. Science 309 1508 1514
22. WaldispuhlJ
CloteP
2007 Computing the partition function and sampling for saturated secondary structures of RNA, with respect to the Turner energy model. J Comput Biol 14 190 215
23. MathewsDH
2004 Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. Rna 10 1178 1190
24. BernhartSH
TaferH
MucksteinU
FlammC
StadlerPF
2006 Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol Biol 1 3
25. ReederJ
HochsmannM
RehmsmeierM
VossB
GiegerichR
2006 Beyond Mfold: recent advances in RNA bioinformatics. J Biotechnol 124 41 55
26. BurdonKP
SharmaS
ChenCS
DimasiDP
MackeyDA
2007 A novel deletion in the FTL gene causes hereditary hyperferritinemia cataract syndrome (HHCS) by alteration of the transcription start site. Hum Mutat 28 742
27. JankovicL
EfremovGD
PetkovG
KattamisC
GeorgeE
1990 Two novel polyadenylation mutations leading to beta(+)-thalassemia. Br J Haematol 75 122 126
28. HoPJ
RochetteJ
FisherCA
WonkeB
JarvisMK
1996 Moderate reduction of beta-globin gene transcript by a novel mutation in the 5′ untranslated region: a study of its interaction with other genotypes in two families. Blood 87 1170 1178
29. CastaldiPJ
ChoMH
CohnM
LangermanF
MoranS
2009 The COPD Genetic Association Compendium: A Comprehensive Online Database of COPD Genetic Associations. Hum Mol Genet
30. EzzikouriS
El FeydiAE
El KihalL
AfifiR
BenazzouzM
2008 Prevalence of common HFE and SERPINA1 mutations in patients with hepatocellular carcinoma in a Moroccan population. Arch Med Res 39 236 241
31. HoPJ
HallGW
WattS
WestNC
WimperisJW
1998 Unusually severe heterozygous beta-thalassemia: evidence for an interacting gene affecting globin translation. Blood 92 3428 3435
32. HoPJ
HallGW
LuoLY
WeatherallDJ
TheinSL
1998 Phenotypic prediction in beta-thalassemia. Ann N Y Acad Sci 850 436 441
33. SgourouA
RoutledgeS
AntoniouM
PapachatzopoulouA
PsiouriL
2004 Thalassaemia mutations within the 5′UTR of the human beta-globin gene disrupt transcription. Br J Haematol 124 828 835
34. ChappellS
DalyL
MorganK
Guetta BaranesT
RocaJ
2006 Cryptic haplotypes of SERPINA1 confer susceptibility to chronic obstructive pulmonary disease. Hum Mutat 27 103 109
35. StensonPD
BallEV
MortM
PhillipsAD
ShielJA
2003 Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21 577 581
36. GeorgeRA
SmithTD
CallaghanS
HardmanL
PieridesC
2008 General mutation databases: analysis and review. J Med Genet 45 65 70
37. KarolchikD
KuhnRM
BaertschR
BarberGP
ClawsonH
2008 The UCSC Genome Browser Database: 2008 update. Nucleic Acids Res 36 D773 779
38. ElnitskiLL
ShahP
MorelandRT
UmayamL
WolfsbergTG
2007 The ENCODEdb portal: simplified access to ENCODE Consortium data. Genome Res 17 954 959
39. SanchezM
GalyB
DandekarT
BengertP
VainshteinY
2006 Iron regulation and the cell cycle: identification of an iron-responsive element in the 3′-untranslated region of human cell division cycle 14A mRNA by a refined microarray-based screening strategy. J Biol Chem 281 22865 22874
40. DingY
ChanCY
LawrenceCE
2005 RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. Rna 11 1157 1166
41. DingY
ChanCY
LawrenceCE
2004 Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 32 W135 141
42. WoodsonSA
2000 Recent insights on RNA folding mechanisms from catalytic RNA. Cell Mol Life Sci 57 796 808
43. QuarrierS
MartinJS
Davis-NeulanderL
BeauregardA
LaederachA
Evaluation of the information content of RNA structure mapping data for secondary structure prediction. RNA 16 1108 1117
44. de BruijneEL
GilsA
GuimaraesAH
DippelDW
DeckersJW
2009 The role of thrombin activatable fibrinolysis inhibitor in arterial thrombosis at a young age: the ATTAC study. J Thromb Haemost 7 919 927
45. BoffaMB
MaretD
HamillJD
BastajianN
CrainichP
2008 Effect of single nucleotide polymorphisms on expression of the gene encoding thrombin-activatable fibrinolysis inhibitor: a functional analysis. Blood 111 183 189
46. BaroniTE
ChitturSV
GeorgeAD
TenenbaumSA
2008 Advances in RIP-chip analysis : RNA-binding protein immunoprecipitation-microarray profiling. Methods Mol Biol 419 93 108
47. StrangerBE
NicaAC
ForrestMS
DimasA
BirdCP
2007 Population genomics of human gene expression. Nat Genet 39 1217 1224
48. KozakM
2003 Alternative ways to think about mRNA sequences and proteins that appear to promote internal initiation of translation. Gene 318 1 23
49. ChildSJ
MillerMK
GeballeAP
1999 Translational control by an upstream open reading frame in the HER-2/neu transcript. J Biol Chem 274 24335 24341
50. JousseC
BruhatA
CarraroV
UranoF
FerraraM
2001 Inhibition of CHOP translation by a peptide encoded by an open reading frame localized in the chop 5′UTR. Nucleic Acids Res 29 4341 4351
51. BeaudoingE
FreierS
WyattJR
ClaverieJM
GautheretD
2000 Patterns of variant polyadenylation signal usage in human genes. Genome Res 10 1001 1010
52. IadevaiaV
CaldarolaS
TinoE
AmaldiF
LoreniF
2008 All translation elongation factors and the e, f, and h subunits of translation initiation factor 3 are encoded by 5′-terminal oligopyrimidine (TOP) mRNAs. Rna 14 1730 1736
53. CharlesworthA
WilczynskaA
ThampiP
CoxLL
MacNicolAM
2006 Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation. Embo J 25 2792 2801
54. LaiEC
BurksC
PosakonyJW
1998 The K box, a conserved 3′ UTR sequence motif, negatively regulates accumulation of enhancer of split complex transcripts. Development 125 4077 4088
55. LaiEC
TamB
RubinGM
2005 Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev 19 1067 1080
56. LeebeekFW
GoorMP
GuimaraesAH
BrouwersGJ
MaatMP
2005 High functional levels of thrombin-activatable fibrinolysis inhibitor are associated with an increased risk of first ischemic stroke. J Thromb Haemost 3 2211 2218
57. BindewaldE
ShapiroBA
2006 RNA secondary structure prediction from sequence alignments using a network of k-nearest neighbor classifiers. Rna 12 342 352
58. HofackerIL
StadlerPF
2006 Memory efficient folding algorithms for circular RNA secondary structures. Bioinformatics 22 1172 1176
59. DartyK
DeniseA
PontyY
2009 VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25 1974 1975
60. PesoleG
LiuniS
GrilloG
IppedicoM
LarizzaA
1999 UTRdb: a specialized database of 5′ and 3′ untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 27 188 191
61. PesoleG
LiuniS
1999 Internet resources for the functional analysis of 5′ and 3′ untranslated regions of eukaryotic mRNAs. Trends Genet 15 378
62. HuangHY
ChienCH
JenKH
HuangHD
2006 RegRNA: an integrated web server for identifying regulatory RNA motifs and elements. Nucleic Acids Res 34 W429 434
63. 2003 The International HapMap Project. Nature 426 789 796
64. DimasAS
DeutschS
StrangerBE
MontgomerySB
BorelC
2009 Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325 1246 1250
65. CowellJK
BiaB
AkoulitchevA
1996 A novel mutation in the promotor region in a family with a mild form of retinoblastoma indicates the location of a new regulatory domain for the RB1 gene. Oncogene 12 431 436
66. MaciasM
DeanM
AtkinsonA
Jimenez-MoralesS
Garcia-VazquezFJ
2008 Spectrum of RB1 gene mutations and loss of heterozygosity in Mexican patients with retinoblastoma: identification of six novel mutations. Cancer Biomark 4 93 99
67. CremonesiL
FumagalliA
SorianiN
FerrariM
LeviS
2001 Double-gradient denaturing gradient gel electrophoresis assay for identification of L-ferritin iron-responsive element mutations responsible for hereditary hyperferritinemia-cataract syndrome: identification of the new mutation C14G. Clin Chem 47 491 497
68. FerrariF
FoglieniB
ArosioP
CamaschellaC
DaraioF
2006 Microelectronic DNA chip for hereditary hyperferritinemia cataract syndrome, a model for large-scale analysis of disorders of iron metabolism. Hum Mutat 27 201 208
69. CremonesiL
ParoniR
FoglieniB
GalbiatiS
FermoI
2003 Scanning mutations of the 5′UTR regulatory sequence of L-ferritin by denaturing high-performance liquid chromatography: identification of new mutations. Br J Haematol 121 173 179
70. BonafeL
DermitzakisET
UngerS
GreenbergCR
Campos-XavierBA
2005 Evolutionary comparison provides evidence for pathogenicity of RMRP mutations. PLoS Genet 1 e47 doi:10.1371/journal.pgen.0010047
71. HoPJ
HallGW
LuoLY
WeatherallDJ
TheinSL
1998 Beta-thalassaemia intermedia: is it possible consistently to predict phenotype from genotype? Br J Haematol 100 70 78
72. WayeJS
EngB
PattersonM
ReisMD
MacdonaldD
2001 Novel beta-thalassemia mutation in a beta-thalassemia intermedia patient. Hemoglobin 25 103 105
73. KazazianHHJr
BoehmCD
1988 Molecular basis and prenatal diagnosis of beta-thalassemia. Blood 72 1107 1116
74. MorgadoA
PicancoI
GomesS
MirandaA
CouceloM
2007 Mutational spectrum of delta-globin gene in the Portuguese population. Eur J Haematol 79 422 428
75. InoueI
NakajimaT
WilliamsCS
QuackenbushJ
PuryearR
1997 A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest 99 1786 1797
76. IshigamiT
UmemuraS
TamuraK
HibiK
NyuiN
1997 Essential hypertension and 5′ upstream core promoter region of human angiotensinogen gene. Hypertension 30 1325 1330
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 8
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Identification of the Bovine Arachnomelia Mutation by Massively Parallel Sequencing Implicates Sulfite Oxidase (SUOX) in Bone Development
- Common Inherited Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits
- A Model for Damage Load and Its Implications for the Evolution of Bacterial Aging
- Did Genetic Drift Drive Increases in Genome Complexity?