Did Genetic Drift Drive Increases in Genome Complexity?
Mechanisms underlying the dramatic patterns of genome size variation across the tree of life remain mysterious. Effective population size (Ne) has been proposed as a major driver of genome size: selection is expected to efficiently weed out deleterious mutations increasing genome size in lineages with large (but not small) Ne. Strong support for this model was claimed from a comparative analysis of Neu and genome size for ≈30 phylogenetically diverse species ranging from bacteria to vertebrates, but analyses at that scale have so far failed to account for phylogenetic nonindependence of species. In our reanalysis, accounting for phylogenetic history substantially altered the perceived strength of the relationship between Neu and genomic attributes: there were no statistically significant associations between Neu and gene number, intron size, intron number, the half-life of gene duplicates, transposon number, transposons as a fraction of the genome, or overall genome size. We conclude that current datasets do not support the hypothesis of a mechanistic connection between Ne and these genomic attributes, and we suggest that further progress requires larger datasets, phylogenetic comparative methods, more robust estimators of genetic drift, and a multivariate approach that accounts for correlations between putative explanatory variables.
Vyšlo v časopise:
Did Genetic Drift Drive Increases in Genome Complexity?. PLoS Genet 6(8): e32767. doi:10.1371/journal.pgen.1001080
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001080
Souhrn
Mechanisms underlying the dramatic patterns of genome size variation across the tree of life remain mysterious. Effective population size (Ne) has been proposed as a major driver of genome size: selection is expected to efficiently weed out deleterious mutations increasing genome size in lineages with large (but not small) Ne. Strong support for this model was claimed from a comparative analysis of Neu and genome size for ≈30 phylogenetically diverse species ranging from bacteria to vertebrates, but analyses at that scale have so far failed to account for phylogenetic nonindependence of species. In our reanalysis, accounting for phylogenetic history substantially altered the perceived strength of the relationship between Neu and genomic attributes: there were no statistically significant associations between Neu and gene number, intron size, intron number, the half-life of gene duplicates, transposon number, transposons as a fraction of the genome, or overall genome size. We conclude that current datasets do not support the hypothesis of a mechanistic connection between Ne and these genomic attributes, and we suggest that further progress requires larger datasets, phylogenetic comparative methods, more robust estimators of genetic drift, and a multivariate approach that accounts for correlations between putative explanatory variables.
Zdroje
1. BaackEJ
WhitneyKD
RiesebergLH
2005 Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytol 167 623 630
2. GregoryTR
2005 The evolution of the genome. Amsterdam Elsevier
3. GregoryTR
NicolJA
TammH
KullmanB
KullmanK
2007 Eukaryotic genome size databases. Nucleic Acids Res 35 D332 D338
4. Center for Biological Sequence Analysis 2010 Genome Atlas Database. Lyngby, Denmark Technical University of Denmark http://www.cbs.dtu.dk/services/GenomeAtlas/.
5. LynchM
2007 The origins of genome architecture. Sunderland, , Massachusetts, USA Sinauer Associates
6. LynchM
2007 The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci USA 104 8597 8604
7. LynchM
ConeryJS
2003 The origins of genome complexity. Science 302 1401 1404
8. BennettMD
LeitchIJ
2005 Genome size evolution in plants.
GregoryTR
The evolution of the genome Amsterdam Elsevier 89 162
9. PetrovDA
2002 Mutational equilibrium model of genome size evolution. Theor Pop Biol 61 531 544
10. CharlesworthB
BartonN
2004 Genome size: Does bigger mean worse? Curr Biol 14 R233 R235
11. DaubinV
MoranNA
2004 Comment on “The origins of genome complexity”. Science 306 978a
12. KooninEV
2009 Evolution of genome architecture. Int J Biochem Cell Biol 41 298 306
13. PrithamEJ
2009 Transposable elements and factors influencing their success in eukaryotes. J Hered 100 648 655
14. YiSV
2006 Non-adaptive evolution of genome complexity. Bioessays 28 979 982
15. FelsensteinJ
1985 Phylogenies and the comparative method. Am Nat 125 1 15
16. GarlandTJr
BennettAF
RezendeEL
2005 Phylogenetic approaches in comparative physiology. J Exp Biol 208 3015 3035
17. HarveyPH
PagelMD
1991 The comparative method in evolutionary biology. Oxford Oxford University Press
18. GarlandT
MidfordPE
IvesAR
1999 An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. Am Zool 39 374 388
19. WhitneyKD
BaackEJ
HamrickJL
GodtMJW
BarringerBC
2010 A role for nonadaptive processes in plant genome size evolution? Evolution 64 2097 2109
20. KuoCH
MoranNA
OchmanH
2009 The consequences of genetic drift for bacterial genome complexity. Genome Res 19 1450 1454
21. YiS
StreelmanJT
2005 Genome size is negatively correlated with effective population size in ray-finned fish. Trends Genet 21 643 646
22. GregoryTR
WittJDS
2008 Population size and genome size in fishes: a closer look. Genome 51 309 313
23. DrakeJW
CharlesworthB
CharlesworthD
CrowJF
1998 Rates of spontaneous mutation. Genetics 148 1667 1686
24. LynchM
2010 Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci USA 107 961 968
25. MaddisonWP
MaddisonDR
2009 Mesquite: a modular system for evolutionary analysis. Version 2.71. http://mesquiteproject.org
26. GuptaRS
2000 The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24 367 402
27. MaddisonDR
SchulzK-S
2007 The Tree of Life Web Project. http://tolweb.org
28. SongJ
XuQK
OlsenR
LoomisWF
ShaulskyG
2005 Comparing the Dictyostelium and Entamoeba genomes reveals an ancient split in the Conosa lineage. PLoS Comp Biol 1 e71 doi:10.1371/journal.pcbi.0010071
29. MaddisonWP
1991 Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Syst Zool 40 304 314
30. LavinSR
KarasovWH
IvesAR
MiddletonKM
GarlandT
2008 Morphometrics of the avian small intestine compared with that of nonflying mammals: A phylogenetic approach. Physiol Biochem Zool 81 526 550
31. GarlandT
IvesAR
2000 Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155 346 364
32. BlombergSP
GarlandT
IvesAR
2003 Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57 717 745
33. HutcheonJM
GarlandT
2004 Are megabats big? J Mamm Evol 11 257 276
34. MidfordPE
GarlandTJr
MaddisonW
2002 PDAP:PDTREE package for Mesquite, version 1.00. http://mesquiteproject.org/pdap_mesquite/
35. GarlandT
HarveyPH
IvesAR
1992 Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41 18 32
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 8
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Identification of the Bovine Arachnomelia Mutation by Massively Parallel Sequencing Implicates Sulfite Oxidase (SUOX) in Bone Development
- Common Inherited Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits
- A Model for Damage Load and Its Implications for the Evolution of Bacterial Aging
- Did Genetic Drift Drive Increases in Genome Complexity?