#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Did Genetic Drift Drive Increases in Genome Complexity?


Mechanisms underlying the dramatic patterns of genome size variation across the tree of life remain mysterious. Effective population size (Ne) has been proposed as a major driver of genome size: selection is expected to efficiently weed out deleterious mutations increasing genome size in lineages with large (but not small) Ne. Strong support for this model was claimed from a comparative analysis of Neu and genome size for ≈30 phylogenetically diverse species ranging from bacteria to vertebrates, but analyses at that scale have so far failed to account for phylogenetic nonindependence of species. In our reanalysis, accounting for phylogenetic history substantially altered the perceived strength of the relationship between Neu and genomic attributes: there were no statistically significant associations between Neu and gene number, intron size, intron number, the half-life of gene duplicates, transposon number, transposons as a fraction of the genome, or overall genome size. We conclude that current datasets do not support the hypothesis of a mechanistic connection between Ne and these genomic attributes, and we suggest that further progress requires larger datasets, phylogenetic comparative methods, more robust estimators of genetic drift, and a multivariate approach that accounts for correlations between putative explanatory variables.


Vyšlo v časopise: Did Genetic Drift Drive Increases in Genome Complexity?. PLoS Genet 6(8): e32767. doi:10.1371/journal.pgen.1001080
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001080

Souhrn

Mechanisms underlying the dramatic patterns of genome size variation across the tree of life remain mysterious. Effective population size (Ne) has been proposed as a major driver of genome size: selection is expected to efficiently weed out deleterious mutations increasing genome size in lineages with large (but not small) Ne. Strong support for this model was claimed from a comparative analysis of Neu and genome size for ≈30 phylogenetically diverse species ranging from bacteria to vertebrates, but analyses at that scale have so far failed to account for phylogenetic nonindependence of species. In our reanalysis, accounting for phylogenetic history substantially altered the perceived strength of the relationship between Neu and genomic attributes: there were no statistically significant associations between Neu and gene number, intron size, intron number, the half-life of gene duplicates, transposon number, transposons as a fraction of the genome, or overall genome size. We conclude that current datasets do not support the hypothesis of a mechanistic connection between Ne and these genomic attributes, and we suggest that further progress requires larger datasets, phylogenetic comparative methods, more robust estimators of genetic drift, and a multivariate approach that accounts for correlations between putative explanatory variables.


Zdroje

1. BaackEJ

WhitneyKD

RiesebergLH

2005 Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytol 167 623 630

2. GregoryTR

2005 The evolution of the genome. Amsterdam Elsevier

3. GregoryTR

NicolJA

TammH

KullmanB

KullmanK

2007 Eukaryotic genome size databases. Nucleic Acids Res 35 D332 D338

4. Center for Biological Sequence Analysis 2010 Genome Atlas Database. Lyngby, Denmark Technical University of Denmark http://www.cbs.dtu.dk/services/GenomeAtlas/.

5. LynchM

2007 The origins of genome architecture. Sunderland, , Massachusetts, USA Sinauer Associates

6. LynchM

2007 The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci USA 104 8597 8604

7. LynchM

ConeryJS

2003 The origins of genome complexity. Science 302 1401 1404

8. BennettMD

LeitchIJ

2005 Genome size evolution in plants.

GregoryTR

The evolution of the genome Amsterdam Elsevier 89 162

9. PetrovDA

2002 Mutational equilibrium model of genome size evolution. Theor Pop Biol 61 531 544

10. CharlesworthB

BartonN

2004 Genome size: Does bigger mean worse? Curr Biol 14 R233 R235

11. DaubinV

MoranNA

2004 Comment on “The origins of genome complexity”. Science 306 978a

12. KooninEV

2009 Evolution of genome architecture. Int J Biochem Cell Biol 41 298 306

13. PrithamEJ

2009 Transposable elements and factors influencing their success in eukaryotes. J Hered 100 648 655

14. YiSV

2006 Non-adaptive evolution of genome complexity. Bioessays 28 979 982

15. FelsensteinJ

1985 Phylogenies and the comparative method. Am Nat 125 1 15

16. GarlandTJr

BennettAF

RezendeEL

2005 Phylogenetic approaches in comparative physiology. J Exp Biol 208 3015 3035

17. HarveyPH

PagelMD

1991 The comparative method in evolutionary biology. Oxford Oxford University Press

18. GarlandT

MidfordPE

IvesAR

1999 An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. Am Zool 39 374 388

19. WhitneyKD

BaackEJ

HamrickJL

GodtMJW

BarringerBC

2010 A role for nonadaptive processes in plant genome size evolution? Evolution 64 2097 2109

20. KuoCH

MoranNA

OchmanH

2009 The consequences of genetic drift for bacterial genome complexity. Genome Res 19 1450 1454

21. YiS

StreelmanJT

2005 Genome size is negatively correlated with effective population size in ray-finned fish. Trends Genet 21 643 646

22. GregoryTR

WittJDS

2008 Population size and genome size in fishes: a closer look. Genome 51 309 313

23. DrakeJW

CharlesworthB

CharlesworthD

CrowJF

1998 Rates of spontaneous mutation. Genetics 148 1667 1686

24. LynchM

2010 Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci USA 107 961 968

25. MaddisonWP

MaddisonDR

2009 Mesquite: a modular system for evolutionary analysis. Version 2.71. http://mesquiteproject.org

26. GuptaRS

2000 The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24 367 402

27. MaddisonDR

SchulzK-S

2007 The Tree of Life Web Project. http://tolweb.org

28. SongJ

XuQK

OlsenR

LoomisWF

ShaulskyG

2005 Comparing the Dictyostelium and Entamoeba genomes reveals an ancient split in the Conosa lineage. PLoS Comp Biol 1 e71 doi:10.1371/journal.pcbi.0010071

29. MaddisonWP

1991 Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Syst Zool 40 304 314

30. LavinSR

KarasovWH

IvesAR

MiddletonKM

GarlandT

2008 Morphometrics of the avian small intestine compared with that of nonflying mammals: A phylogenetic approach. Physiol Biochem Zool 81 526 550

31. GarlandT

IvesAR

2000 Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155 346 364

32. BlombergSP

GarlandT

IvesAR

2003 Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57 717 745

33. HutcheonJM

GarlandT

2004 Are megabats big? J Mamm Evol 11 257 276

34. MidfordPE

GarlandTJr

MaddisonW

2002 PDAP:PDTREE package for Mesquite, version 1.00. http://mesquiteproject.org/pdap_mesquite/

35. GarlandT

HarveyPH

IvesAR

1992 Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41 18 32

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#