Comparative Phylogenomics Uncovers the Impact of Symbiotic Associations on Host Genome Evolution
Symbiotic associations between eukaryotes and microbes play essential roles in the nutrition, health and behavior of both partners. It is well accepted that hosts control and shape their associated microbiome. In this study, we provide evidence that symbiotic microbes also participate in the evolution of host genomes. In particular, we show that the independent loss of a symbiosis in several plant lineages results in a convergent modification of non-host genomes. Interestingly, a significant fraction of genes lost in non-hosts play an important role in this symbiosis, supporting the use of comparative genomics as a powerful approach to identify undiscovered gene networks.
Vyšlo v časopise:
Comparative Phylogenomics Uncovers the Impact of Symbiotic Associations on Host Genome Evolution. PLoS Genet 10(7): e32767. doi:10.1371/journal.pgen.1004487
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004487
Souhrn
Symbiotic associations between eukaryotes and microbes play essential roles in the nutrition, health and behavior of both partners. It is well accepted that hosts control and shape their associated microbiome. In this study, we provide evidence that symbiotic microbes also participate in the evolution of host genomes. In particular, we show that the independent loss of a symbiosis in several plant lineages results in a convergent modification of non-host genomes. Interestingly, a significant fraction of genes lost in non-hosts play an important role in this symbiosis, supporting the use of comparative genomics as a powerful approach to identify undiscovered gene networks.
Zdroje
1. TremaroliV, BäckhedF (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489: 242–249.
2. ParniskeM (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6: 763–775.
3. SchluterJ, FosterKR (2012) The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biol 10: e1001424.
4. KiersET, DuhamelM, BeesettyY, MensahJA, FrankenO, et al. (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333: 880–882.
5. PennisiE (2013) Mysteries of development. How do microbes shape animal development? Science 340: 1159–1160.
6. OldroydGE, HarrisonMJ, PaszkowskiU (2009) Reprogramming plant cells for endosymbiosis. Science 324: 753–754.
7. ChungH, PampSJ, HillJA, SuranaNK, EdelmanSM, et al. (2012) Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149: 1578–1593.
8. HumphreysCP, FranksPJ, ReesM, BidartondoMI, LeakeJR, et al. (2010) Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat Commun 1: 103.
9. RedeckerD, KodnerR, GrahamLE (2000) Glomalean fungi from the Ordovician. Science 289: 1920–1921.
10. DelauxPM, Séjalon-DelmasN, BécardG, AnéJM (2013) Evolution of the plant-microbe symbiotic ‘toolkit’. Trends Plant Sci 18: 298–304.
11. LauresserguesD, DelauxPM, FormeyD, Lelandais-BrièreC, FortS, et al. (2012) The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2. Plant J 72: 512–22.
12. VeigaRS, FaccioA, GenreA, PieterseCM, BonfanteP, et al. (2013) Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant Cell Environ 36: 1926–37.
13. ZhangR, GuoC, ZhangW, WangP, LiL, et al. (2013) Disruption of the petal identity gene APETALA3-3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae). Proc Natl Acad Sci U S A 110: 5074–5079.
14. De RobertisEM (2008) Evo-devo: variations on ancestral themes. Cell 132: 185–195.
15. LiuW, KohlenW, LilloA, Op den CampR, IvanovS, et al. (2011) Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23: 3853–3865.
16. Gomez-RoldanV, FermasS, BrewerPB, Puech-PagèsV, DunEA, et al. (2008) Strigolactone inhibition of shoot branching. Nature 455: 189–194.
17. KhadeSW, RodriguesBF, SharmaPK (2010) Symbiotic interactions between arbuscular mycorrhizal (AM) fungi and male papaya plants: its status, role and implications. Plant Physiol Biochem 48: 893–902.
18. Ronse De CraeneLP, HastonE (2006) The systematic relationships of glucosinolate-producing plants and related families: a cladistic investigation based on morphological and molecular characters. Botanical Journal of the Linnean Society 151: 453–494.
19. LambersH, TesteFP (2013) Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game? Plant Cell Environ 36: 1911–5.
20. DohmJC, MinocheAE, HoltgräweD, Capella-GutiérrezS, ZakrzewskiF, et al. (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505: 546–549.
21. Ibarra-LacletteE, LyonsE, Hernández-GuzmánG, Pérez-TorresCA, Carretero-PauletL, et al. (2013) Architecture and evolution of a minute plant genome. Nature 498: 94–98.
22. RanjanA, IchihashiY, FarhiM, ZumsteinK, TownsleyB, et al. (2014) De novo assembly and characterization of the transcriptome of the parasitic weed Cuscuta pentagona identifies genes associated with plant parasitism. Plant Physiol [In press]: doi:10.1104/pp.113.234864
23. WickettNJ, HonaasLA, WafulaEK, DasM, HuangK, et al. (2011) Transcriptomes of the parasitic plant family Orobanchaceae reveal surprising conservation of chlorophyll synthesis. Curr Biol 21: 2098–2104.
24. ZhangH, WeiL, MiaoH, ZhangT, WangC (2012) Development and validation of genic-SSR markers in sesame by RNA-seq. BMC Genomics 13: 316.
25. AshrafiH, HillT, StoffelK, KozikA, YaoJ, et al. (2012) De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genomics 13: 571.
26. TaoX, GuYH, WangHY, ZhengW, LiX, et al. (2012) Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam]. PLoS One 7: e36234.
27. XuX, PanS, ChengS, ZhangB, MuD, et al. (2011) Genome sequence and analysis of the tuber crop potato. Nature 475: 189–195.
28. ConsortiumTG (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485: 635–641.
29. BunnR, LekbergY, ZabinskiC (2009) Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants. Ecology 90: 1378–1388.
30. BassaC, EtemadiM, CombierJP, BouzayenM, Audran-DelalandeC (2013) Sl-IAA27 gene expression is induced during arbuscular mycorrhizal symbiosis in tomato and in Medicago truncatula. Plant Signal Behav 8 doi: 10.4161/psb.25637
31. NagyR, KarandashovV, ChagueV, KalinkevichK, TamasloukhtM, et al. (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42: 236–250.
32. ObaH, TawarayK, WagatsumaT (2012) Arbuscular mycorrhizal colonization in Lupinus andrelated genera. Plant Science and Plant Nutrition 47: 685–694.
33. SchulzeJ, TempleG, TempleSJ, BeschowH, VanceCP (2006) Nitrogen fixation by white lupin under phosphorus deficiency. Ann Bot 98: 731–740.
34. YangH, TaoY, ZhengZ, ZhangQ, ZhouG, et al. (2013) Draft genome sequence, and a sequence-defined genetic linkage map of the legume crop species Lupinus angustifolius L. PLoS One 8: e64799.
35. YinD, WangY, ZhangX, LiH, LuX, et al. (2013) De novo assembly of the peanut (Arachis hypogaea L.) seed transcriptome revealed candidate unigenes for oil accumulation pathways. PLoS One 8: e73767.
36. RoseCM, VenkateshwaranM, VolkeningJD, GrimsrudPA, MaedaJ, et al. (2012) Rapid phosphoproteomic and transcriptomic changes in the rhizobia-legume symbiosis. Mol Cell Proteomics 11: 724–744.
37. TuskanGA, DifazioS, JanssonS, BohlmannJ, GrigorievI, et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313: 1596–1604.
38. WangE, SchornackS, MarshJF, GobbatoE, SchwessingerB, et al. (2012) A Common Signaling Process that Promotes Mycorrhizal and Oomycete Colonization of Plants. Curr Biol 22: 2242–2246.
39. LavinM, HerendeenPS, WojciechowskiMF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol 54: 575–594.
40. LeeE, Cibrian-JaramilloA, KolokotronisS, KatariM, StamatakisA, et al. (2011) A functional phylogenomic view of the seeds plants. PLoS Genetics 7: e1002411.
41. GomezSK, JavotH, DeewatthanawongP, Torres-JerezI, TangY, et al. (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9: 10.
42. PumplinN, ZhangX, NoarRD, HarrisonMJ (2012) Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion. Proc Natl Acad Sci U S A 109: E665–672.
43. FlossDS, HauseB, LangePR, KüsterH, StrackD, et al. (2008) Knock-down of the MEP pathway isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes. Plant J 56: 86–100.
44. KeveiZ, SeresA, KeresztA, KalóP, KissP, et al. (2005) Significant microsynteny with new evolutionary highlights is detected between Arabidopsis and legume model plants despite the lack of macrosynteny. Mol Genet Genomics 274: 644–657.
45. ZhuH, RielyBK, BurnsNJ, AnéJM (2006) Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses. Genetics 172: 2491–2499.
46. DelauxPM, BécardG, CombierJP (2013) NSP1 is a component of the Myc signaling pathway. New Phytol 199: 59–65.
47. LambersH, ClementsJC, NelsonMN (2013) How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae). Am J Bot 100: 263–288.
48. FuchsB, HaselwandterK (2004) Red list plants: colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 14: 277–281.
49. LiAR, GuanKY (2007) Mycorrhizal and dark septate endophytic fungi of Pedicularis species from northwest of Yunnan Province, China. Mycorrhiza 17: 103–109.
50. GherbiH, MarkmannK, SvistoonoffS, EstevanJ, AutranD, et al. (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria. Proc Natl Acad Sci U S A 105: 4928–4932.
51. ReyT, NarsA, BonhommeM, BottinA, HuguetS, et al. (2013) NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens. New Phytol 198: 875–886.
52. MoreauS, FromentinJ, VailleauF, VerniéT, HuguetS, et al. (2014) The symbiotic transcription factor MtEFD and cytokinins are positively acting in the Medicago truncatula and Ralstonia solanacearum pathogenic interaction. New Phytol 201: 1343–1357.
53. LeyRE, HamadyM, LozuponeC, TurnbaughPJ, RameyRR, et al. (2008) Evolution of mammals and their gut microbes. Science 320: 1647–1651.
54. MaslowskiKM, VieiraAT, NgA, KranichJ, SierroF, et al. (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461: 1282–1286.
55. ViaudS, SaccheriF, MignotG, YamazakiT, DaillèreR, et al. (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342: 971–976.
56. HooperLV, LittmanDR, MacphersonAJ (2012) Interactions between the microbiota and the immune system. Science 336: 1268–1273.
57. BalzergueC, Puech-PagèsV, BécardG, RochangeSF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot 62: 1049–1060.
58. VenkateshwaranM, CosmeA, HanL, BanbaM, SatyshurKA, et al. (2012) The Recent Evolution of a Symbiotic Ion Channel in the Legume Family Altered Ion Conductance and Improved Functionality in Calcium Signaling. Plant Cell 24: 2528–45.
59. TamuraK, PetersonD, PetersonN, StecherG, NeiM, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739.
60. LyonsE, PedersenB, KaneJ, AlamM, MingR, et al. (2008) Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol 148: 1772–1781.
61. Team RC (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
62. Project AG (2013) The Amborella genome and the evolution of flowering plants. Science 342: 1241089.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 7
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Wnt Signaling Interacts with Bmp and Edn1 to Regulate Dorsal-Ventral Patterning and Growth of the Craniofacial Skeleton
- Novel Approach Identifies SNPs in and with Evidence for Parent-of-Origin Effect on Body Mass Index
- Hypoxia Adaptations in the Grey Wolf () from Qinghai-Tibet Plateau
- DNA Topoisomerase 1α Promotes Transcriptional Silencing of Transposable Elements through DNA Methylation and Histone Lysine 9 Dimethylation in