#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Evolution and Genetic Architecture of Chromatin Accessibility and Function in Yeast


Inside the nucleus of a cell, DNA is associated with proteins to form a complex three-dimensional structure referred to as chromatin. The structure of chromatin influences how accessible specific DNA sequences are to transcription factors, and therefore chromatin accessibility is an important determinant of gene expression. To better understand how patterns of chromatin accessibility change over time, we quantitatively measured levels of chromatin accessibility in two yeast species and their diploid hybrid. We show that significant differences in chromatin accessibility exist between these two species and occur upstream of genes that are enriched for specific biological functions. We also develop new statistical methods to understand the genetics of variation in chromatin accessibility. Finally, we show that the relationship between chromatin accessibility and gene expression is complex, and many of the observed differences in chromatin accessibility between these two species may not influence gene expression levels. Thus, our work highlights the need to develop additional experimental and statistical methods to distinguish between functionally significant and benign changes in chromatin accessibility.


Vyšlo v časopise: Evolution and Genetic Architecture of Chromatin Accessibility and Function in Yeast. PLoS Genet 10(7): e32767. doi:10.1371/journal.pgen.1004427
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004427

Souhrn

Inside the nucleus of a cell, DNA is associated with proteins to form a complex three-dimensional structure referred to as chromatin. The structure of chromatin influences how accessible specific DNA sequences are to transcription factors, and therefore chromatin accessibility is an important determinant of gene expression. To better understand how patterns of chromatin accessibility change over time, we quantitatively measured levels of chromatin accessibility in two yeast species and their diploid hybrid. We show that significant differences in chromatin accessibility exist between these two species and occur upstream of genes that are enriched for specific biological functions. We also develop new statistical methods to understand the genetics of variation in chromatin accessibility. Finally, we show that the relationship between chromatin accessibility and gene expression is complex, and many of the observed differences in chromatin accessibility between these two species may not influence gene expression levels. Thus, our work highlights the need to develop additional experimental and statistical methods to distinguish between functionally significant and benign changes in chromatin accessibility.


Zdroje

1. BrittenRJ, DavidsonEH (1971) Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q Rev Biol 46: 111–38.

2. KingMC, WilsonAC (1975) Evolution at two levels in humans and chimpanzees. Science 188: 107–16.

3. WrayGA (2007) The evolutionary significance of cis-regulatory mutations. Nature Reviews Genetics 8: 206–16 doi:10.1038/nrg2063

4. ShapiroMD, MarksME, PeichelCL, BlackmanBK, NerengKS, et al. (2004) Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. 428:717–23 Nature 428: 717–23.

5. AkeyJ, RuheA, AkeyD, WongA, ConnellyC, et al. (2010) Tracking footprints of artificial selection in the dog genome. Proc Natl Acad Sci USA 107: 1160–1165.

6. MouC, PitelF, GourichonD, VignolesF, TzikaA, et al. (2011) Cryptic Patterning of Avian Skin Confers a Developmental Facility for Loss of Neck Feathering. PLoS Biol 9: e1001028 doi:10.1371/journal.pbio.1001028.g007

7. SkellyDA, RonaldJ, AkeyJM (2009) Inherited variation in gene expression. Annu Rev Genomics Hum Genet 10: 313–332 doi:10.1146/annurev-genom-082908-150121

8. EnattahNS, SahiT, SavilahtiE, TerwilligerJD, PeltonenL, et al. (2002) Identification of a variant associated with adult-type hypolactasia. Nature Genet 30: 233–237.

9. TishkoffSA, ReedFA, RanciaroA, VoightBF, BabbittCC, et al. (2007) Convergent adaptation of human lactase persistence in Africa and Europe. Nature Genet 39: 31–40.

10. TournamilleC, ColinY, CartronJP, Le Van KimC (1995) Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nature Genet 10: 224–228.

11. HamblinMT, Di RienzoA (2000) Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. Am J Hum Genet 66: 1669–1679.

12. AbzhanovA, ProtasM, GrantBR, GrantPR, TabinCJ (2004) Bmp4 and morphological variation of beaks in Darwin's finches. Science 305: 1462–5.

13. ViselA, RubinEM, PennacchioLA (2009) Genomic views of distant-acting enhancers. Nature 461: 199–205 doi:10.1038/nature08451

14. MauranoMT, HumbertR, RynesE, ThurmanRE, HaugenE, et al. (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337: 1190–5 doi:10.1126/science.1222794

15. PrimigM, WilliamsRM, WinzelerEA, TevzadzeGG, ConwayAR, et al. (2000) The core meiotic transcriptome in budding yeasts. Nat Genet 26: 415–23 doi:10.1038/82539

16. SandbergR, YasudaR, PankratzDG, CarterTA, Del RioJA, et al. (2000) Regional and strain-specific gene expression mapping in the adult mouse brain. Proc Natl Acad Sci USA 97: 11038–43.

17. BremRB, YvertG, ClintonR, KruglyakL (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296: 752–5 doi:10.1126/science.1069516

18. KhaitovichP, HellmannI, EnardW, NowickK, LeinweberM, et al. (2005) Parallel Patterns of Evolution in the Genomes and Transcriptomes of Humans and Chimpanzees. Science 309: 1850–1854 doi:10.1126/science.1108296

19. PickrellJK, MarioniJC, PaiAA, DegnerJF, EngelhardtBE, et al. (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464: 768–772 doi:10.1038/nature08872

20. TsankovAM, ThompsonDA, SochaA, RegevA, RandoO (2010) The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol 8: e1000414 doi:10.1371/journal.pbio.1000414

21. WittkoppPJ, HaerumBK, ClarkAG (2004) Evolutionary changes in cis and trans gene regulation. Nature 430: 85–8 doi:10.1038/nature02698

22. TiroshI, ReikhavS, LevyA, BarkaiN (2009) A Yeast Hybrid Provides Insight into the Evolution of Gene Expression Regulation. Science 324: 659–662 doi:10.1126/science.1169766

23. EmersonJ, HsiehL, SungH, WangT, HuangC, et al. (2010) Natural selection on cis and trans regulation in yeasts. Genome Res 20: 826–836 doi:10.1101/gr.101576.109

24. SkellyD, JohanssonM, MadeoyJ, WakefieldJ, AkeyJ (2011) A powerful and flexible statistical framework for testing hypotheses of allele-specific gene expression from RNA-seq data. Genome Res 21: 1728–1737 doi:10.1101/gr.119784.110

25. WittkoppPJ, HaerumB, ClarkAG (2008) Regulatory changes underlying expression differences within and between Drosophila species. Nat Genet 40: 346–350 doi:10.1038/ng.77

26. HanM, GrunsteinM (1988) Nucleosome loss activates yeast downstream promoters in vivo. Cell 55: 1137–45.

27. GrossDS, AdamsCC, LeeS, StentzB (1993) A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene. EMBO 12: 3931–45.

28. BirneyE, LiebJD, FureyTS, CrawfordGE, IyerVR (2010) Allele-specific and heritable chromatin signatures in humans. Hum Mol Genet 19: R204–R209 doi:10.1093/hmg/ddq404

29. GossettAJ, LiebJD (2012) In Vivo Effects of Histone H3 Depletion on Nucleosome Occupancy and Position in Saccharomyces cerevisiae. PLoS Genet 8: e1002771 doi:10.1371/journal.pgen.1002771.g005

30. ThurmanRE, RynesE, HumbertR, VierstraJ, MauranoMT, et al. (2012) The accessible chromatin landscape of the human genome. Nature 489: 75–82 doi:10.1038/nature11232

31. StergachisAB, NephS, ReynoldsA, HumbertR, MillerB, et al. (2013) Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. Cell 154: 888–903 doi:10.1016/j.cell.2013.07.020

32. McDaniellR, LeeB, SongL, LiuZ, BoyleA, et al. (2010) Heritable Individual-Specific and Allele-Specific Chromatin Signatures in Humans. Science 328: 235–239 doi:10.1126/science.1184655

33. KasowskiM, Kyriazopoulou-PanagiotopoulouS, GrubertF, ZauggJB, KundajeA, et al. (2013) Extensive Variation in Chromatin States Across Humans. Science 342: 750–2 doi:10.1126/science.1242510

34. LeeK, KimSC, JungI, KimK, SeoJ, et al. (2013) Genetic landscape of open chromatin in yeast. PLoS Genet 9: e1003229 doi:10.1371/journal.pgen.1003229

35. ShibataY, SheffieldN, FedrigoO, BabbittC, WorthamM, et al. (2012) Extensive Evolutionary Changes in Regulatory Element Activity during Human Origins Are Associated with Altered Gene Expression and Positive Selection. PLoS Genet 8: e1002789 doi:10.1371/journal.pgen.1002789.g007

36. DegnerJF, PaiAA, Pique-RegiR, VeyrierasJ, GaffneyDJ, et al. (2012) DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482: 390–4 doi:10.1038/nature10808

37. KellisM, PattersonN, EndrizziM, BirrenB, LanderES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423: 241–54 doi:10.1038/nature01644

38. HoganGJ, LeeCK, LiebJD (2006) Cell cycle-specified fluctuation of nucleosome occupancy at gene promoters. PLoS Genet 2: e158 doi:10.1371/journal.pgen.0020158

39. HesselberthJR, ChenX, ZhangZ, SaboPJ, SandstromR (2009) Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat Methods 6: 283–9 doi:10.1038/nmeth.1313

40. SimonJM, GiresiPG, DavisIJ, LiebJD (2013) A detailed protocol for formaldehyde-assisted isolation of regulatory elements (FAIRE). Curr Protoc Mol Biol Chapter 21: Unit 21.26 doi:10.1002/0471142727.mb2126s102

41. RandoO, ChangH (2009) Genome-Wide Views of Chromatin Structure. Annu Rev Biochem 78: 245–271 doi:10.1146/annurev.biochem.78.071107.134639

42. StoreyJD, TibshiraniR (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100: 9440–5 doi:10.1073/pnas.1530509100

43. MedinaI, CarbonellJ, PulidoL, MadeiraSC, GoetzS, et al. (2010) Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res 38: W210–3 doi:10.1093/nar/gkq388

44. RonaldJ, BremRB, WhittleJ, KruglyakL (2005) Local regulatory variation in Saccharomyces cerevisiae. PLoS Genet 1: e25 doi:10.1371/journal.pgen.0010025

45. HinnebuschA, NatarajanK (2002) Gcn4p, a Master Regulator of Gene Expression, Is Controlled at Multiple Levels by Diverse Signals of Starvation and Stress. Eukaryot Cell 1: 22–32 doi:10.1128/EC.01.1.22-32.2002

46. StanbroughM, RowenDW, MagasanikB (1995) Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc Natl Acad Sci USA 92: 9450–4.

47. RonaldJ, AkeyJ (2007) The Evolution of Gene Expression QTL in Saccharomyces cerevisiae. PLoS One 2: e678 doi:10.1371/journal.pone.0000678.t001

48. ENCODE Project Consortium (2012) BernsteinBE, BirneyE, DunhamI, GreenED, et al. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 447: 799–816 doi:10.1038/nature11247

49. Rose MD, Winston F, Hieter P (1990) Methods in yeast genetics: A laboratory course manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press. 198 p.

50. SkellyDA, MerrihewGE, RiffleM, ConnellyCF, KerrEO, et al. (2013) Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast. Genome Res 23: 1496–1504 doi:10.1101/gr.155762.113

51. LiH, DurbinR (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760 doi:10.1093/bioinformatics/btp324

52. LiH, HandsakerB, WysokerA, FennellT, RuanJ, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–9 doi:10.1093/bioinformatics/btp352

53. LitiG, CarterDM, MosesAM, WarringerJ, PartsL, et al. (2009) Population genomics of domestic and wild yeasts. Nature 458: 337–341 doi:10.1038/nature07743

54. Harris RS (2007) Improved pairwise alignment of genomic DNA [PhD thesis]. [University Park (PA)]: The Pennsylvania State University.

55. BlanchetteM (2004) Aligning Multiple Genomic Sequences With the Threaded Blockset Aligner. Genome Res 14: 708–715 doi:10.1101/gr.1933104

56. AndersS, HuberW (2010) Differential expression analysis for sequence count data. Genome Biol 11: R106.

57. PaulM, RieblerA, BachmannLM, RueH, HeldL (2010) Bayesian bivariate meta-analysis of diagnostic test studies using integrated nested Laplace approximations. Stat Med 29: 1325–39 doi:10.1002/sim.3858

58. FongY, RueH, WakefieldJ (2010) Bayesian inference for generalized linear mixed models. Biostatistics 11: 397–412.

59. BaileyTL, BodenM, BuskeFA, FrithM, GrantCE, et al. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37: W202–8 doi:10.1093/nar/gkp335

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#