Hypoxia Adaptations in the Grey Wolf () from Qinghai-Tibet Plateau
Understanding the genetic mechanisms that allow some individuals to live at high altitudes under hypoxic conditions can provide insight into the evolutionary constraints of adaptation to extreme conditions and the development of hypoxia-related disease in humans. The Tibetan grey wolf (Canis lupus chanco) has long existed on the Qinghai-Tibet Plateau, where low oxygen tension exerts unique selection pressure on individuals. Comparing the complete genome sequences of 4 grey wolves from high altitude and 5 from low altitude, we identify three candidate genes for high-altitude adaptation (EPAS1, ANGPT1, and RYR2) that show strong signals of selection. The three genes potentially enhance function under hypoxic conditions by increasing oxygen delivery (EPAS1 and ANGPT1) and heart (RYR2) function. These genes also appear under selection in high altitude human populations, which suggesting there may be limited pathways for adapting to high altitude existence.
Vyšlo v časopise:
Hypoxia Adaptations in the Grey Wolf () from Qinghai-Tibet Plateau. PLoS Genet 10(7): e32767. doi:10.1371/journal.pgen.1004466
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004466
Souhrn
Understanding the genetic mechanisms that allow some individuals to live at high altitudes under hypoxic conditions can provide insight into the evolutionary constraints of adaptation to extreme conditions and the development of hypoxia-related disease in humans. The Tibetan grey wolf (Canis lupus chanco) has long existed on the Qinghai-Tibet Plateau, where low oxygen tension exerts unique selection pressure on individuals. Comparing the complete genome sequences of 4 grey wolves from high altitude and 5 from low altitude, we identify three candidate genes for high-altitude adaptation (EPAS1, ANGPT1, and RYR2) that show strong signals of selection. The three genes potentially enhance function under hypoxic conditions by increasing oxygen delivery (EPAS1 and ANGPT1) and heart (RYR2) function. These genes also appear under selection in high altitude human populations, which suggesting there may be limited pathways for adapting to high altitude existence.
Zdroje
1. BeallCM (2007) Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci USA(Suppl 1): 8655–8660.
2. WuT, KayserB (2006) High altitude adaptation in Tibetans. High Alt Med Biol 7: 193–208.
3. BeallCM, CavalleriGL, DengL, ElstonRC, GaoY, et al. (2010) Natural selection on EPAS1 (HIF2a) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci USA 107(25): 11459–11464.
4. BighamA, BauchetM, PintoD, MaoX, AkeyJM, et al. (2010) Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. Plos Genet 6: e1001116.
5. SimonsonTS, YangY, HuffCD, YunH, QinG, et al. (2010) Genetic evidence for high-altitude adaptation in Tibet. Science 329: 72–75.
6. YiX, LiangY, Huerta-SanchezE, JinX, CuoZXP, et al. (2010) Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329: 75–78.
7. PengY, YangZ, ZhangH, CuiC, QiX, et al. (2011) Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Mol Biol Evol 28: 1075–1081.
8. XuS, LiS, YangY, TanJ, LouH, et al. (2011) A genome-wide search for signals of high-altitude adaptation in Tibetans. Mol Biol Evol 28: 1003–1011.
9. JiL, QiuY, IrwinDM, TamSC, TangNLS, et al. (2012) Genetic Adaptation of the Hypoxia-Inducible Factor Pathway to Oxygen Pressure among Eurasian Human Populations. Mol Biol Evol 29(11): 3359–3370.
10. XingJ, WurenT, SimonsonTS, WatkinsWS, WitherspoonDJ, et al. (2013) Genomic analysis of natural selection and phenotypic variation in high-altitude Mongolians. Plos Genet 9(7): e1003634.
11. ChevironZA, BachmanGC, ConnatyAD, McClellandGB, StorzJF (2012) Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice. Proc Natl Acad Sci USA 109: 8635–8640.
12. QiuQ, ZhangG, MaT, QianW, WangJ, et al. (2012) The yak genome and adaptation to life at high altitude. Nat Genet 44: 946–9.
13. CaiQ, QianX, LangY, LuoY, XuJ, et al. (2013) The genome sequence of the ground tit Pseudopodoces humilis provides insights into its adaptation to high altitude. Genome Biol 14: R29.
14. GeR-L, CaiQ, ShenY-Y, SanA, MaL, et al. (2013) Draft genome sequence of the Tibetan antelope. Nat Commun 4: 1858.
15. AggarwalRK, RamadeviJ, SinghL (2003) Ancient origin and evolution of the Indian wolf: evidence from mitochondrial DNA typing of wolves from Trans-Himalayan region and Pennisular India. Genome Biol 4: P6.
16. VilàC, AmorimIR, LeonardJA, PosadaD, CastroviejoJ, et al. (1999) Mitochondrial DNA phylogeography and population history of the grey wolf Canis lupus. Mol Ecol 8: 2089–2103.
17. Mech LD, Boitani L (2003) Wolves: behavior, ecology and conservation. University of Chicago Press, Chicago.
18. GeffenE, AndersonMJ, WayneRK (2004) Climate and habitat barriers to dispersal in the highly mobile grey wolf. Mol Ecol 13(8): 2481–2490.
19. Pocock RI (1941) The fauna of British India including Ceylon and Burma. Mammalia, Vol II. Carnivora, Taylor and Francis, London.
20. Roberts TJ (1977) The Mammals of Pakistan. Ernest Benn Ltd., London & Tonbridge.
21. FreedmanAH, GronauI, SchweizerRM, Ortega-Del VecchyoD, HanE, et al. (2014) Genome sequencing highlights the dynamic early history of dogs. Plos Genet 10(1): e1004016.
22. LiH, DurbinR (2011) Inference of human population history from individual whole-genome sequences. Nature 475: 493–496.
23. ZhengBX, XuQQ, ShenYP (2002) The relationship between climate change and Quaternary glacial cycles on the Qinghai-Tibetan Plateau: review and speculation. Quatern Int 97–98: 93–101.
24. KumarP, HenikoffS, NgPC (2009) redicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4: 1073.
25. StoneEA, SidowA (2005) Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity. Genome Res 15: 978–986.
26. ChunS, FayJC (2009) Identification of deleterious mutations within three human genomes. Genome Res 19: 1553.
27. BarrettJC, FryB, MallerJ, DalyMJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2): 263–265.
28. XuDM, ShenYP (1995) On ancient ice-sheet and ice age in the Tibetan plateau. J Glaciol Geocryol 17: 213–229.
29. YiCL, CuiZJ, XiongHG (2005) Numerical periods of Quaternary glaciations in China. Quatern Sci 25: 609–611.
30. MooreLG (2001) Human genetic adaptation to high altitude. High Alt Med Biol 2(2): 257–279.
31. QiX, CuiC, PengY, ZhangX, YangZ, et al. (2013) Genetic evidence of Paleolithic colonization and Neolithic expansion of modern humans on the Tibetan Plateau. Mol Biol Evol 30(8): 1761–1778.
32. LiM, TianS, JinL, ZhouG, LiY, et al. (2013) Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat Genet 45(12): 1431–1438.
33. HuCJ, WangLY, ChodoshLA, KeithB, SimonMC (2003) Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23: 9361–9374.
34. PatelSA, SimonMC (2008) Biology of hypoxia-inducible factor-2alpha in development and disease. Cell Death Differ 15: 628–634.
35. PrabhakarNR, SemenzaGL (2012) Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 92: 967–1003.
36. GillespieD, FillM (2013) Pernicious attrition and inter-RyR2 CICR current control in cardiac muscle. J Mol Cellular Cardiology 58: 53–58.
37. FischerTH, MaierLS, SossallaS (2013) The ryanodine receptor leak: how a tattered receptor plunges the failing heart into crisis. Heart Fail Rev 18: 475–483.
38. WangB, ZhangYB, ZhangF, LinH, WangX, et al. (2011) On the Origin of Tibetans and Their Genetic Basis in Adapting High-Altitude Environments. Plos One 6(2): e17002.
39. Huerta-SánchezE, DeGiorgioM, PaganiL, TarekegnA, EkongR, et al. (2013) Genetic signatures reveal high-altitude adaptation in a set of Ethiopian populations. Mol Biol Evol doi: 10.1093/molbev/mst089
40. Sambrook J, Fritsch E, Maniatis T (1989) Molecular Cloning: a Laboratory Manual. New York, NY: Cold Spring Harbor Laboratory Press.
41. vonHoldtBM, StahlerDR, BangsEE, SmithDW, JimenezMD, et al. (2010) A novel assessment of population structure and gene flow in grey wolf populations of the Northern Rocky Mountains of the United States. Mol Ecol 19: 4412–4427.
42. PritchardJ, StephensM, DonnellyP (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959.
43. vonHoldtBM, PollingerJP, EarlDA, ParkerHG, OstranderEA, et al. (2013) Identification of recent hybridization between gray wolves and domesticated dogs by SNP genotyping. Mammalian Genome 24(1–2): 80–88.
44. LangmeadB, SalzbergSL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4): 357–359.
45. DePristoMA, BanksE, PoplinR, GarimellaKV, MaguireJR, et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43: 491–498.
46. LiH, HandsakerB, WysokerA, FennellT, RuanJ, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.
47. AltshulerD, DurbinRM, AbecasisGR, BentleyDR, ChakravartiA, et al. (2010) A map of human genome variation from population-scale sequencing. Nature 467: 1061–1073.
48. LachanceJ, VernotB, ElbersCC, FerwerdaB, FromentA, et al. (2012) evolutionary history and adaptation from high-coverage whole-genome sequences of diverse African hunter-gatherers. Cell 150(3): 457–69.
49. FujitaPA, RheadB, ZweigAS, HinrichsAS, KarolchikD, et al. (2010) The UCSC Genome Browser database: update 2011. Nucleic Acids Res 39: D876.
50. BirneyE, AndrewsTD, BevanP, CaccamoM, ChenY, et al. (2004) An overview of Ensembl. Genome Res 14: 925.
51. BairochA, BougueleretL, AltairacS, AmendoliaV, AuchinclossA, et al. (2009) The Universal Protein Resource (UniProt). Nucleic Acids Res 37: D169–D174.
52. AshburnerM, BallCA, BlakeJA, BotsteinD, ButlerH, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29.
53. KanehisaM, GotoS, HattoriM, Aoki-KinoshitaKF, ItohM, et al. (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34: D354–D357.
54. PruittKD, TatusovaT (2005) MaglottDR (2005) NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33: D501–D504.
55. HsuF, KentWJ, ClawsonH, KuhnRM, DiekhansM, et al. (2006) The UCSC Known Genes. Bioinformatics 22: 1036–1046.
56. WilmingLG, GilbertJGR, HoweK, TrevanionS, HubbardT, et al. (2008) The vertebrate genome annotation (Vega) database. Nucleic Acids Res 36: D753–D760.
57. PurcellS, NealeB, Todd-BrownK, ThomasL, FerreiraMAR, et al. (2007) PLINK: A tool set for Whole-Genome association and population-based linkage analyses. Am J Hum Genet 81(3): 559–575.
58. EvannoG, RegnautS, GoudetJ (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611–2620.
59. PriceAL, PattersonN, YuF, CoxDR, WaliszewskaA, et al. (2007) A genomewide admixture map for Latino populations. Am J Hum Genet 80: 1024–1036.
60. WeirBS, CockerhamCC (1984) Estimating F-Statistics for the analysis of population-structure. Evolution 38: 1358.
61. TajimaF (1989) Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585.
62. BiswasS, AkeyJM (2006) Genomic insights into positive selection. Trends in Genet 437–446.
63. ReimandJ, ArakT, ViloJ (2011) g:Profiler-a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res 39: W307–W315.
64. BenjaminiY, HochbergY (1995) Controlling the false discovery rate - a Practical and Powerful Approach to Multiple Testing. J Roy Stat Soc B Met 57: 289–300.
65. EdgarRC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792.
66. ZhangG, CowledC, ShiZ, HuangZ, Bishop-LillyKA, et al. (2013) Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339: 456–459.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 7
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Wnt Signaling Interacts with Bmp and Edn1 to Regulate Dorsal-Ventral Patterning and Growth of the Craniofacial Skeleton
- Novel Approach Identifies SNPs in and with Evidence for Parent-of-Origin Effect on Body Mass Index
- Hypoxia Adaptations in the Grey Wolf () from Qinghai-Tibet Plateau
- DNA Topoisomerase 1α Promotes Transcriptional Silencing of Transposable Elements through DNA Methylation and Histone Lysine 9 Dimethylation in