LIN-42, the PERIOD homolog, Negatively Regulates MicroRNA Transcription
MicroRNAs play pervasive roles in controlling gene expression throughout animal development. Given that individual microRNAs are predicted to regulate hundreds of mRNAs and that most mRNA transcripts are microRNA targets, it is essential that the expression levels of microRNAs be tightly regulated. With the goal of unveiling factors that regulate the expression of microRNAs that control developmental timing, we identified lin-42, the C. elegans homolog of the human and Drosophila period gene implicated in circadian gene regulation, as a negative regulator of microRNA expression. By analyzing the transcriptional expression patterns of representative microRNAs, we found that the transcription of many microRNAs is normally highly dynamic and coupled aspects of post-embryonic growth and behavior. We suggest that lin-42 functions to modulate the transcriptional output of temporally-regulated microRNAs and mRNAs in order to maintain optimal expression of these genes throughout development.
Vyšlo v časopise:
LIN-42, the PERIOD homolog, Negatively Regulates MicroRNA Transcription. PLoS Genet 10(7): e32767. doi:10.1371/journal.pgen.1004486
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004486
Souhrn
MicroRNAs play pervasive roles in controlling gene expression throughout animal development. Given that individual microRNAs are predicted to regulate hundreds of mRNAs and that most mRNA transcripts are microRNA targets, it is essential that the expression levels of microRNAs be tightly regulated. With the goal of unveiling factors that regulate the expression of microRNAs that control developmental timing, we identified lin-42, the C. elegans homolog of the human and Drosophila period gene implicated in circadian gene regulation, as a negative regulator of microRNA expression. By analyzing the transcriptional expression patterns of representative microRNAs, we found that the transcription of many microRNAs is normally highly dynamic and coupled aspects of post-embryonic growth and behavior. We suggest that lin-42 functions to modulate the transcriptional output of temporally-regulated microRNAs and mRNAs in order to maintain optimal expression of these genes throughout development.
Zdroje
1. PasquinelliAE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13: 271–282 doi:10.1038/nrg3162
2. LeeY, KimM, HanJ, YeomK-H, LeeS, et al. (2004) MicroRNA genes are transcribed by RNA polymerase II. Embo J 23: 4051–4060 doi:10.1038/sj.emboj.7600385
3. LeeY, JeonK, LeeJT, KimS, KimVN (2002) MicroRNA maturation: stepwise processing and subcellular localization. Embo J 21: 4663–70.
4. DenliAM, TopsBBJ, PlasterkRHA, KettingRF, HannonGJ (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432: 231–235 doi:10.1038/nature03049
5. KettingRF, FischerSE, BernsteinE, SijenT, HannonGJ, et al. (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15: 2654–9.
6. GrishokA, PasquinelliAE, ConteD, LiN, ParrishS, et al. (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106: 23–34.
7. KuhnC-D, Joshua-TorL (2013) Eukaryotic Argonautes come into focus. Trends Biochem Sci 38: 263–271 doi:10.1016/j.tibs.2013.02.008
8. HammellCM (2008) The microRNA-argonaute complex: A platform for mRNA modulation. RNA Biol 5: 123–7.
9. FabianMR, SonenbergN (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19: 586–593 doi:10.1038/nsmb.2296
10. BartelDP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233 doi:10.1016/j.cell.2009.01.002
11. BaekD, VillénJ, ShinC, CamargoFD, GygiSP, et al. (2008) The impact of microRNAs on protein output. Nature 455: 64–71 doi:10.1038/nature07242
12. FarhKK-H, GrimsonA, JanC, LewisBP, JohnstonWK, et al. (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310: 1817–1821 doi:10.1126/science.1121158
13. FriedmanRC, FarhKK-H, BurgeCB, BartelDP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19: 92–105 doi:10.1101/gr.082701.108
14. Lim, LP, LauNC, Garrett-EngeleP, GrimsonA, SchelterJM, et al. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769–773.
15. KasugaH, FukuyamaM, KitazawaA, KontaniK, KatadaT (2013) The microRNA miR-235 couples blast-cell quiescence to the nutritional state. Nature 497: 503–506 doi:10.1038/nature12117
16. ReinhartBJ, SlackFJ, BassonM, PasquinelliAE, BettingerJC, et al. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901–6.
17. BrenneckeJ, HipfnerDR, StarkA, RussellRB, CohenSM (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113: 25–36.
18. HeL, HeX, LimLP, de StanchinaE, XuanZ, et al. (2007) A microRNA component of the p53 tumour suppressor network. Nature 447: 1130–1134 doi:10.1038/nature05939
19. GurtanAM, SharpPA (2013) The Role of miRNAs in Regulating Gene Expression Networks. J Mol Biol 425: 3582–3600 doi:10.1016/j.jmb.2013.03.007
20. FinneganEF, PasquinelliAE (2013) MicroRNA biogenesis: regulating the regulators. Crit Rev Biochem Mol Biol 48: 51–68 doi:10.3109/10409238.2012.738643
21. AmbrosV (2011) MicroRNAs and developmental timing. Curr Opin Genet Dev 21: 511–517 doi:10.1016/j.gde.2011.04.003
22. SulstonJE, HorvitzHR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56: 110–56.
23. RougvieAE, MossEG (2013) Developmental Transitions in C. elegans Larval Stages. Curr Top Dev Biol 105: 153–180 doi:10.1016/B978-0-12-396968-2.00006-3
24. LeeRC, FeinbaumRL, AmbrosV (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–54.
25. WightmanB, HaI, RuvkunG (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75: 855–862.
26. MossEG, LeeRC, AmbrosV (1997) The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88: 637–46.
27. AbbottAL, Alvarez-SaavedraE, MiskaEA, LauNC, BartelDP, et al. (2005) The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell 9: 403–414.
28. SlackFJ, BassonM, LiuZ, AmbrosV, HorvitzHR, et al. (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 5: 659–669.
29. OwMC, MartinezNJ, OlsenPH, SilvermanHS, BarrasaMI, et al. (2008) The FLYWCH transcription factors FLH-1, FLH-2, and FLH-3 repress embryonic expression of microRNA genes in C. elegans. Genes Dev 22: 2520–2534.
30. Van WynsberghePM, KaiZS, MassirerKB, BurtonVH, YeoGW, et al. (2011) LIN-28 co-transcriptionally binds primary let-7 to regulate miRNA maturation in Caenorhabditis elegans. Nat Struct Mol Biol 18: 302–308 doi:10.1038/nsmb.1986
31. LinSY, JohnsonSM, AbrahamM, VellaMC, PasquinelliA, et al. (2003) The C. elegans hunchback Homolog, hbl-1, Controls Temporal Patterning and Is a Probable MicroRNA Target. Dev Cell 4: 639–650.
32. LehrbachNJ, ArmisenJ, LightfootHL, MurfittKJ, BugautA, et al. (2009) LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nat Struct Mol Biol 16: 1016–1020 doi:10.1038/nsmb.1675
33. HayesGD, RuvkunG (2006) Misexpression of the Caenorhabditis elegans miRNA let-7 is sufficient to drive developmental programs. Cold Spring Harb Symp Quant Biol 71: 21–27 doi:10.1101/sqb.2006.71.018
34. FeinbaumR, AmbrosV (1999) The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans. Dev Biol 210: 87–95.
35. RoushSF, SlackFJ (2009) Transcription of the C. elegans let-7 microRNA is temporally regulated by one of its targets, hbl-1. Dev Biol 334: 523–534 doi:10.1016/j.ydbio.2009.07.012
36. JohnsonSM, GrosshansH, ShingaraJ, ByromM, JarvisR, et al. (2005) RAS is regulated by the let-7 microRNA family. Cell 120: 635–647.
37. KipreosET (2005) C. elegans cell cycles: invariance and stem cell divisions. Nat Rev Mol Cell Biol 6: 766–776 doi:10.1038/nrm1738
38. MonsalveGC, FrandAR (2012) Toward a unified model of developmental timing: A “molting” approach. Worm 1: 221–230 doi:10.4161/worm.20874
39. MonsalveGC, Van BuskirkC, FrandAR (2011) LIN-42/PERIOD Controls Cyclical and Developmental Progression of C. elegans Molts. Curr Biol 21: 2033–2045 doi:10.1016/j.cub.2011.10.054
40. ChalfieM, HorvitzHR, SulstonJE (1981) Mutations that lead to reiterations in the cell lineages of C. elegans. Cell 24: 59–69.
41. FrandAR, RusselS, RuvkunG (2005) Functional genomic analysis of C. elegans molting. PLoS Biol 3: e312 doi:10.1371/journal.pbio.0030312
42. AmbrosV, HorvitzHR (1984) Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226: 409–416.
43. HayesGD, FrandAR, RuvkunG (2006) The mir-84 and let-7 paralogous microRNA genes of Caenorhabditis elegans direct the cessation of molting via the conserved nuclear hormone receptors NHR-23 and NHR-25. Development 133: 4631–4641 doi:10.1242/dev.02655
44. RougvieAE, AmbrosV (1995) The heterochronic gene lin-29 encodes a zinc finger protein that controls a terminal differentiation event in Caenorhabditis elegans. Development 121: 2491–2500.
45. BettingerJC, LeeK, RougvieAE (1996) Stage-specific accumulation of the terminal differentiation factor LIN-29 during Caenorhabditis elegans development. Development 122: 2517–2527.
46. AbrahanteJE, MillerEA, RougvieAE (1998) Identification of heterochronic mutants in Caenorhabditis elegans. Temporal misexpression of a collagen::green fluorescent protein fusion gene. Genetics 149: 1335–1351.
47. JeonM, GardnerHF, MillerEA, DeshlerJ, RougvieAE (1999) Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins. Science 286: 1141–1146.
48. TennessenJM, GardnerHF, VolkML, RougvieAE (2006) Novel heterochronic functions of the Caenorhabditis elegans period-related protein LIN-42. Dev Biol 289: 30–43 doi:10.1016/j.ydbio.2005.09.044
49. ZinovyevaAY, BouaskerS, SimardMJ, HammellCM, AmbrosV (2014) Mutations in Conserved Residues of the C. elegans microRNA Argonaute ALG-1 Identify Separable Functions in ALG-1 miRISC Loading and Target Repression. PLoS Genet 10: e1004286 doi:10.1371/journal.pgen.1004286
50. WicksSR, YehRT, GishWR, WaterstonRH, PlasterkRH (2001) Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat Genet 28: 160–164 doi:10.1038/88878
51. BanerjeeD, KwokA, LinSY, SlackFJ (2005) Developmental timing in C. elegans is regulated by kin-20 and tim-1, homologs of core circadian clock genes. Dev Cell 8: 287–295 doi:10.1016/j.devcel.2004.12.006
52. LiJ, GreenwaldI (2010) LIN-14 inhibition of LIN-12 contributes to precision and timing of C. elegans vulval fate patterning. Curr Biol 20: 1875–1879 doi:10.1016/j.cub.2010.09.055
53. MartinezNJ, OwMC, Reece-HoyesJS, BarrasaMI, AmbrosVR, et al. (2008) Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity. Genome Res 18: 2005–2015.
54. BrennerJL, KempBJ, AbbottAL (2012) The mir-51 family of microRNAs functions in diverse regulatory pathways in Caenorhabditis elegans. PLoS One 7: e37185 doi:10.1371/journal.pone.0037185
55. SimonDJ, MadisonJM, ConeryAL, Thompson-PeerKL, SoskisM, et al. (2008) The microRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions. Cell 133: 903–915.
56. Esquela-KerscherA, JohnsonSM, BaiL, SaitoK, PartridgeJ, et al. (2005) Post-embryonic expression of C. elegans microRNAs belonging to the lin-4 and let-7 families in the hypodermis and the reproductive system. Dev Dyn 234: 868–877.
57. KaiZS, FinneganEF, HuangS, PasquinelliAE (2013) Multiple cis-elements and trans-acting factors regulate dynamic spatio-temporal transcription of let-7 in Caenorhabditis elegans. Dev Biol 374: 223–233 doi:10.1016/j.ydbio.2012.11.021
58. Lim, LP, LauNC, WeinsteinEG, AbdelhakimA, YektaS, et al. (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17: 991–1008.
59. WangG, ReinkeV (2008) A C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis. Curr Biol 18: 861–867 doi:10.1016/j.cub.2008.05.009
60. BatistaPJ, RubyJG, ClaycombJM, ChiangR, FahlgrenN, et al. (2008) PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol Cell 31: 67–78 doi:10.1016/j.molcel.2008.06.002
61. GuW, LeeH-C, ChavesD, YoungmanEM, PazourGJ, et al. (2012) CapSeq and CIP-TAP identify Pol II start sites and reveal capped small RNAs as C. elegans piRNA precursors. Cell 151: 1488–1500 doi:10.1016/j.cell.2012.11.023
62. DiederichsS, HaberDA (2007) Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131: 1097–1108 doi:10.1016/j.cell.2007.10.032
63. JohnstonRJ, HobertO (2003) A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426: 845–849.
64. SarinS, O'MearaMM, FlowersEB, AntonioC, PooleRJ, et al. (2007) Genetic screens for Caenorhabditis elegans mutants defective in left/right asymmetric neuronal fate specification. Genetics 176: 2109–2130.
65. HammellCM, LubinI, BoagPR, BlackwellTK, AmbrosV (2009) nhl-2 Modulates microRNA activity in Caenorhabditis elegans. Cell 136: 926–938.
66. Vasquez-RifoA, BosséGD, RondeauEL, JannotG, DallaireA, et al. (2013) A new role for the GARP complex in microRNA-mediated gene regulation. PLoS Genet 9: e1003961 doi:10.1371/journal.pgen.1003961
67. ZhangP, ZhangH (2013) Autophagy modulates miRNA-mediated gene silencing and selectively degrades AIN-1/GW182 in C. elegans. EMBO Rep 14: 568–576 doi:10.1038/embor.2013.53
68. CorishP, Tyler-SmithC (1999) Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng 12: 1035–1040.
69. BarnesJA, GomesAV (1995) PEST sequences in calmodulin-binding proteins. Mol Cell Biochem 149–150: 17–27.
70. LiX, ZhaoX, FangY, JiangX, DuongT, et al. (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273: 34970–34975.
71. RechsteinerM, RogersSW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21: 267–271.
72. HuangZJ, EderyI, RosbashM (1993) PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature 364: 259–262 doi:10.1038/364259a0
73. McIntoshBE, HogeneschJB, BradfieldCA (2010) Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annu Rev Physiol 72: 625–645 doi:10.1146/annurev-physiol-021909-135922
74. NiwaR, ZhouF, LiC, SlackFJ (2008) The expression of the Alzheimer's amyloid precursor protein-like gene is regulated by developmental timing microRNAs and their targets in Caenorhabditis elegans. Dev Biol 315: 418–425 doi:10.1016/j.ydbio.2007.12.044
75. FielenbachN, GuardavaccaroD, NeubertK, ChanT, LiD, et al. (2007) DRE-1: an evolutionarily conserved F box protein that regulates C. elegans developmental age. Dev Cell 12: 443–455 doi:10.1016/j.devcel.2007.01.018
76. HornM, GeisenC, CermakL, BeckerB, NakamuraS, et al. (2014) DRE-1/FBXO11-Dependent Degradation of BLMP-1/BLIMP-1 Governs C. elegans Developmental Timing and Maturation. Dev Cell 28 doi:10.1016/j.devcel.2014.01.028
77. ZhengB, LarkinDW, AlbrechtU, SunZS, SageM, et al. (1999) The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400: 169–173 doi:10.1038/22118
78. TeiH, OkamuraH, ShigeyoshiY, FukuharaC, OzawaR, et al. (1997) Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389: 512–516 doi:10.1038/39086
79. HendriksG-J, GaidatzisD, AeschimannF, GroβhansH (2014) Extensive Oscillatory Gene Expression during C. elegans Larval Development. Mol Cell 53: 380–392 doi:10.1016/j.molcel.2013.12.013
80. KimDH, GrünD, van OudenaardenA (2013) Dampening of expression oscillations by synchronous regulation of a microRNA and its target. Nat Genet 45: 1337–1344 doi:10.1038/ng.2763
81. GrünD, KirchnerM, ThierfelderN, StoeckiusM, SelbachM, et al. (2014) Conservation of mRNA and Protein Expression during Development of C. elegans. Cell Rep 6: 565–577 doi:10.1016/j.celrep.2014.01.001
82. BrennerS (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.
83. MelloCC, KramerJM, StinchcombD, AmbrosV (1991) Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. Embo J 10: 3959–3970.
84. Epstein HF, Shakes DC (1995) Caenorhabditis elegans: Modern Biological Analysis of an Organism. Academic Press. 1 pp.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 7
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Wnt Signaling Interacts with Bmp and Edn1 to Regulate Dorsal-Ventral Patterning and Growth of the Craniofacial Skeleton
- Novel Approach Identifies SNPs in and with Evidence for Parent-of-Origin Effect on Body Mass Index
- Hypoxia Adaptations in the Grey Wolf () from Qinghai-Tibet Plateau
- DNA Topoisomerase 1α Promotes Transcriptional Silencing of Transposable Elements through DNA Methylation and Histone Lysine 9 Dimethylation in