#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Genetic Strategy to Measure Circulating Insulin Reveals Genes Regulating Insulin Production and Secretion


Genome-wide association studies in patients with type 2 diabetes mellitus have identified more than 65 loci, encoding up to 500 candidate susceptibility genes. Thus, investigators are fundamentally challenged to (i) screen and identify relevant candidates in vivo, (ii) determine if loss- or gain-of-function underlies the association, (iii) link perturbed gene function to hallmark type 2 diabetes mellitus physiological phenotypes like insulin production or secretion, and (iv) identify relevant tissue(s) where the biological function of a specific regulator is required. Here we exploit Drosophila genetics to reveal the molecular functions of evolutionally conserved regulators that are associated with human type 2 diabetes mellitus. Targeted knockdown of Drosophila orthologues of diabetes risk genes revealed tissue-specific roles for these genes in regulating insulin production and secretion. These findings should accelerate use of Drosophila and other genetically-tractable systems to discover conserved mechanisms and regulators controlling in vivo insulin dynamics relevant to diabetes and other human diseases.


Vyšlo v časopise: A Genetic Strategy to Measure Circulating Insulin Reveals Genes Regulating Insulin Production and Secretion. PLoS Genet 10(8): e32767. doi:10.1371/journal.pgen.1004555
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004555

Souhrn

Genome-wide association studies in patients with type 2 diabetes mellitus have identified more than 65 loci, encoding up to 500 candidate susceptibility genes. Thus, investigators are fundamentally challenged to (i) screen and identify relevant candidates in vivo, (ii) determine if loss- or gain-of-function underlies the association, (iii) link perturbed gene function to hallmark type 2 diabetes mellitus physiological phenotypes like insulin production or secretion, and (iv) identify relevant tissue(s) where the biological function of a specific regulator is required. Here we exploit Drosophila genetics to reveal the molecular functions of evolutionally conserved regulators that are associated with human type 2 diabetes mellitus. Targeted knockdown of Drosophila orthologues of diabetes risk genes revealed tissue-specific roles for these genes in regulating insulin production and secretion. These findings should accelerate use of Drosophila and other genetically-tractable systems to discover conserved mechanisms and regulators controlling in vivo insulin dynamics relevant to diabetes and other human diseases.


Zdroje

1. KasugaM (2006) Insulin resistance and pancreatic beta cell failure. J Clin Invest 116: 1756–1760.

2. ImamuraM, MaedaS (2011) Genetics of type 2 diabetes: the GWAS era and future perspectives. Endocr J 58: 723–739.

3. RulifsonEJ, KimSK, NusseR (2002) Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296: 1118–1120.

4. IkeyaT, GalicM, BelawatP, NairzK, HafenE (2002) Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol 12: 1293–1300.

5. GrönkeS, ClarkeDF, BroughtonS, AndrewsTD, PartridgeL (2010) Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet 6: e1000857.

6. SajidW, KulahinN, SchluckebierG, RibelU, HendersonHR, et al. (2011) Structural and biological properties of the Drosophila insulin-like peptide 5 show evolutionary conservation. J Biol Chem 286: 661–673.

7. GéminardC, RulifsonEJ, LéopoldP (2009) Remote control of insulin secretion by fat cells in Drosophila. Cell Metab 10: 199–207.

8. PascoMY, LéopoldP (2012) High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo. PLoS One 7: e36583.

9. BaiH, KangP, TatarM (2012) Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain. Aging Cell 11: 978–985.

10. PouliAE, KennedyHJ, SchofieldJG, RutterGA (1998) Insulin targeting to the regulated secretory pathway after fusion with green fluorescent protein and firefly luciferase. Biochem J 331: 669–675.

11. WatkinsS, GengX, LiL, PapworthG, RobbinsPD, et al. (2002) Imaging secretory vesicles by fluorescent protein insertion in propeptide rather than mature secreted peptide. Traffic 3: 461–471.

12. HoneggerB, GalicM, KöhlerK, WittwerF, BrogioloW, et al. (2008) Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. J Biol 7: 10.

13. BrogioloW, StockerH, IkeyaT, RintelenF, FernandezR, et al. (2001) An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11: 213–221.

14. YoshiokaM, KayoT, IkedaT, KoizumiA (1997) A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46: 887–894.

15. WeissMA (2013) Diabetes mellitus due to the toxic misfolding of proinsulin variants. FEBS Lett 587: 1942–1950.

16. FolkDG, HanC, BradleyTJ (2001) Water acquisition and partitioning in Drosophila melanogaster: effects of selection for desiccation-resistance. J Exp Biol 204: 3323–3331.

17. BombaraM, MasielloP, NovelliM, BergaminiE (1995) Impairment of the priming effect of glucose on insulin secretion from isolated islets of aging rats. Acta Diabetol 32: 69–73.

18. BeerSF, BirchamPM, BloomSR, ClarkPM, HalesCN, et al. (1989) The effect of a 72-h fast on plasma levels of pituitary, adrenal, thyroid, pancreatic and gastrointestinal hormones in healthy men and women. J Endocrinol 120: 337–350.

19. FridellYW, HohM, KréneiszO, HosierS, ChangC, et al. (2009) Increased uncoupling protein (UCP) activity in Drosophila insulin-producing neurons attenuates insulin signaling and extends lifespan. Aging 1: 699–713.

20. KréneiszO, ChenX, FridellYW, MulkeyDK (2010) Glucose increases activity and Ca2+ in insulin-producing cells of adult Drosophila. Neuroreport 21: 1116–1120.

21. KimSK, RulifsonEJ (2004) Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature 431: 316–320.

22. FridellYW, Sánchez-BlancoA, SilviaBA, HelfandSL (2005) Targeted expression of the human uncoupling protein 2 (hUCP2) to adult neurons extends life span in the fly. Cell Metab 1: 145–152.

23. EscherSA, Rasmuson-LestanderA (1999) The Drosophila glucose transporter gene: cDNA sequence, phylogenetic comparisons, analysis of functional sites and secondary structures. Hereditas 130: 95–103.

24. BillingsLK, FlorezJC (2010) The genetics of type 2 diabetes: what have we learned from GWAS? Ann N Y Acad Sci 1212: 59–77.

25. YangY, ChangBH, ChanL (2013) Sustained expression of the transcription factor GLIS3 is required for normal beta cell function in adults. EMBO Mol Med 5: 92–104.

26. BiddingerSB, KahnCR (2006) From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol 68: 123–158.

27. TatarM, KopelmanA, EpsteinD, TuMP, YinCM, et al. (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292: 107–110.

28. StaveleyBE, RuelL, JinJ, StambolicV, MastronardiFG, et al. (1998) Genetic analysis of protein kinase B (AKT) in Drosophila. Curr Biol 8: 599–602.

29. AcciliD, DragoJ, LeeEJ, JohnsonMD, CoolMH, et al. (1996) Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat Genet 12: 106–109.

30. BrüningJC, WinnayJ, Bonner-WeirS, TaylorSI, AcciliD, et al. (1997) Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 88: 561–572.

31. BrüningJC, MichaelMD, WinnayJN, HayashiT, HörschD, et al. (1998) A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 2: 559–569.

32. KulkarniRN, BrüningJC, WinnayJN, PosticC, MagnusonMA, et al. (1999) Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96: 329–339.

33. MichaelMD, KulkarniRN, PosticC, PrevisSF, ShulmanGI, et al. (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6: 87–97.

34. McGovernVL, PacakCA, SewellST, TurskiML, SeegerMA (2003) A targeted gain of function screen in the embryonic CNS of Drosophila. Mech Dev 120: 1193–1207.

35. ShalabyNA, ParksAL, MorrealeEJ, OsswaltMC, PfauKM, et al. (2009) A screen for modifiers of notch signaling uncovers Amun, a protein with a critical role in sensory organ development. Genetics 182: 1061–1076.

36. WeberAL, KhanGF, MagwireMM, TaborCL, MackayTF, et al. (2012) Genome-wide association analysis of oxidative stress resistance in Drosophila melanogaster. PLoS One 7: e34745.

37. RajanA, PerrimonN (2012) Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 151: 123–137.

38. KaplanDD, ZimmermannG, SuyamaK, MeyerT, ScottMP (2008) A nucleostemin family GTPase, NS3, acts in serotonergic neurons to regulate insulin signaling and control body size. Genes Dev 22: 1877–1893.

39. BuchS, MelcherC, BauerM, KatzenbergerJ, PankratzMJ (2008) Opposing effects of dietary protein and sugar regulate a transcriptional target of Drosophila insulin-like peptide signaling. Cell Metab 7: 321–332.

40. ParkS, BustamanteEL, AntonovaJ, McLeanGW, KimSK (2011) Specification of Drosophila corpora cardiaca neuroendocrine cells from mesoderm is regulated by Notch signaling. PLoS Genet 7: e1002241.

41. PfeifferBD, JenettA, HammondsAS, NgoTT, MisraS, et al. (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci U S A 105: 9715–9720.

42. DeshpandeSA, CarvalhoGB, AmadorA, PhillipsAM, HoxhaS, et al. (2014) Quantifying Drosophila food intake: comparative analysis of current methodology. Nat Methods 11: 535–540.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#