Chromatin Insulator Factors Involved in Long-Range DNA Interactions and Their Role in the Folding of the Drosophila Genome
Chromatin insulators mediate specific long-range DNA interactions required for the three dimensional organization of the interphase nucleus and for transcription regulation, but the mechanisms underlying the formation of these interactions is currently unknown. In this manuscript, we investigate the molecular associations between different protein components of insulators (BEAF32, CP190 and Chromator) by biochemical and biophysical means, and develop a novel biophysical assay to determine what factors are necessary and essential for the formation of long-range DNA interactions (LRI). Importantly, we show that CP190 and Chromator are able to mediate LRIs between specifically-bound BEAF32 nucleoprotein complexes. This ability of CP190 and Chromator to establish LRI requires specific contacts between BEAF32 and their C-terminal domains, and dimerization through their N-terminal domains. In particular, the BTB/POZ domains of CP190 form a strict homodimer. We propose a general model for insulator function in which BEAF32/dCTCF/Su(HW) provide DNA specificity, whereas CP190/Chromator are responsible for the physical interactions required for long-range contacts. This network of organized, multi-layer interactions could explain the different activities of insulators, and suggest a general mechanism for how insulators may shape the organization of higher-order chromatin during cell division.
Vyšlo v časopise:
Chromatin Insulator Factors Involved in Long-Range DNA Interactions and Their Role in the Folding of the Drosophila Genome. PLoS Genet 10(8): e32767. doi:10.1371/journal.pgen.1004544
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004544
Souhrn
Chromatin insulators mediate specific long-range DNA interactions required for the three dimensional organization of the interphase nucleus and for transcription regulation, but the mechanisms underlying the formation of these interactions is currently unknown. In this manuscript, we investigate the molecular associations between different protein components of insulators (BEAF32, CP190 and Chromator) by biochemical and biophysical means, and develop a novel biophysical assay to determine what factors are necessary and essential for the formation of long-range DNA interactions (LRI). Importantly, we show that CP190 and Chromator are able to mediate LRIs between specifically-bound BEAF32 nucleoprotein complexes. This ability of CP190 and Chromator to establish LRI requires specific contacts between BEAF32 and their C-terminal domains, and dimerization through their N-terminal domains. In particular, the BTB/POZ domains of CP190 form a strict homodimer. We propose a general model for insulator function in which BEAF32/dCTCF/Su(HW) provide DNA specificity, whereas CP190/Chromator are responsible for the physical interactions required for long-range contacts. This network of organized, multi-layer interactions could explain the different activities of insulators, and suggest a general mechanism for how insulators may shape the organization of higher-order chromatin during cell division.
Zdroje
1. ChangHY, CuvierO, DekkerJ (2009) Gene dates, parties and galas. Symposium on Chromatin Dynamics and Higher Order Organization. EMBO Rep 10: 689–693 doi:10.1038/embor.2009.136
2. ElginSC, GrewalSI (2003) Heterochromatin: silence is golden. Curr Biol 13: R895–R898.
3. MechaliM (2010) Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol 11: 728–738 doi:10.1038/nrm2976
4. ProbstAV, DunleavyE, AlmouzniG (2009) Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol 10: 192–206 doi:10.1038/nrm2640
5. SextonT, BantigniesF, CavalliG (2009) Genomic interactions: chromatin loops and gene meeting points in transcriptional regulation. Semin Cell Dev Biol 20: 849–855 doi:10.1016/j.semcdb.2009.06.004
6. MisteliT (2007) Beyond the sequence: cellular organization of genome function. Cell 128: 787–800 doi:10.1016/j.cell.2007.01.028
7. GasznerM, FelsenfeldG (2006) Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 7: 703–713 doi:10.1038/nrg1925
8. NegreN, BrownCD, MaL, BristowCA, MillerSW, et al. (2011) A cis-regulatory map of the Drosophila genome. Nature 471: 527–531 doi:10.1038/nature09990
9. VogelmannJ, ValeriA, GuillouE, CuvierO, NollmannM (2011) Roles of chromatin insulator proteins in higher-order chromatin organization and transcription regulation. Nucleus 2: 358–369 doi:10.4161/nucl.2.5.17860
10. BusheyAM, RamosE, CorcesVG (2009) Three subclasses of a Drosophila insulator show distinct and cell type-specific genomic distributions. Genes Dev 23: 1338–1350 doi:10.1101/gad.1798209
11. EmberlyE, BlattesR, SchuettengruberB, HennionM, JiangN, et al. (2008) BEAF regulates cell-cycle genes through the controlled deposition of H3K9 methylation marks into its conserved dual-core binding sites. PLoS Biol 6: 2896–2910 doi:10.1371/journal.pbio.0060327
12. HouC, LiL, QinZ, CorcesV (2012) Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol Cell 48: 471–484 doi:10.1016/j.molcel.2012.08.031
13. SextonT, YaffeE, KenigsbergE, BantigniesFDR, LeblancB, et al. (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148: 458–472 doi:10.1016/j.cell.2012.01.010
14. GeyerPK, CorcesVG (1992) DNA position-specific repression of transcription by a Drosophila zinc finger protein. Genes Dev 6: 1865–1873.
15. ZhaoK, HartCM, LaemmliUK (1995) Visualization of chromosomal domains with boundary element-associated factor BEAF-32. Cell 81: 879–889.
16. GasznerM, VazquezJ, SchedlP (1999) The Zw5 protein, a component of the scs chromatin domain boundary, is able to block enhancer-promoter interaction. Genes Dev 13: 2098–2107.
17. MaedaRK, KarchF (2007) Making connections: boundaries and insulators in Drosophila. Curr Opin Genet Dev 17: 394–399 doi:10.1016/j.gde.2007.08.002
18. MoonH, FilippovaG, LoukinovD, PugachevaE, ChenQ, et al. (2005) CTCF is conserved from Drosophila to humans and confers enhancer blocking of the Fab-8 insulator. EMBO Rep 6: 165–170 doi:10.1038/sj.embor.7400334
19. CuvierO, HartCM, LaemmliUK (1998) Identification of a class of chromatin boundary elements. Mol Cell Biol 18: 7478–7486.
20. RoyS, GilbertMK, HartCM (2007) Characterization of BEAF mutations isolated by homologous recombination in Drosophila. Genetics 176: 801–813 doi:10.1534/genetics.106.068056
21. PaiCY, LeiEP, GhoshD, CorcesVG (2004) The centrosomal protein CP190 is a component of the gypsy chromatin insulator. Mol Cell 16: 737–748 doi:10.1016/j.molcel.2004.11.004
22. OegemaK, WhitfieldWG, AlbertsB (1995) The cell cycle-dependent localization of the CP190 centrosomal protein is determined by the coordinate action of two separable domains. J Cell Biol 131: 1261–1273.
23. AkbariOS, OliverD, EyerK, PaiCY (2009) An Entry/Gateway cloning system for general expression of genes with molecular tags in Drosophila melanogaster. BMC Cell Biol 10: 8 doi:10.1186/1471-2121-10-8
24. GolovninA, MazurA, KopantsevaM, KurshakovaM, GulakPV, et al. (2007) Integrity of the Mod(mdg4)-67.2 BTB domain is critical to insulator function in Drosophila melanogaster. Mol Cell Biol 27: 963–974 doi:10.1128/MCB.00795-06
25. NegreN, BrownCD, ShahPK, KheradpourP, MorrisonCA, et al. (2010) A comprehensive map of insulator elements for the Drosophila genome. PLoS Genet 6: e1000814 doi:10.1371/journal.pgen.1000814
26. Van BortleK, RamosE, TakenakaN, YangJ, WahiJE, et al. (2012) Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains. Genome Res 22: 2176–2187 doi:10.1101/gr.136788.111
27. BlantonJ, GasznerM, SchedlP (2003) Protein:protein interactions and the pairing of boundary elements in vivo. Genes Dev 17: 664–675 doi:10.1101/gad.1052003
28. DegnerSC, Verma-GaurJ, WongTP, BossenC, IversonGM, et al. (2011) CCCTC-binding factor (CTCF) and cohesin influence the genomic architecture of the Igh locus and antisense transcription in pro-B cells. Proc Natl Acad Sci USA 108: 9566–9571 doi:10.1073/pnas.1019391108
29. KurukutiS, TiwariVK, TavoosidanaG, PugachevaE, MurrellA, et al. (2006) CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci USA 103: 10684–10689 doi:10.1073/pnas.0600326103
30. MishiroT, IshiharaK, HinoS, TsutsumiS, AburataniH, et al. (2009) Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster. EMBO J 28: 1234–1245 doi:10.1038/emboj.2009.81
31. Phillips-CreminsJE, SauriaME, SanyalA, GerasimovaTI, LajoieBR, et al. (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153: 1281–1295 doi:10.1016/j.cell.2013.04.053
32. WendtKS, YoshidaK, ItohT, BandoM, KochB, et al. (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451: 796–801 doi:10.1038/nature06634
33. WoodAM, Van BortleK, RamosE, TakenakaN, RohrbaughM, et al. (2011) Regulation of chromatin organization and inducible gene expression by a Drosophila insulator. Mol Cell 44: 29–38 doi:10.1016/j.molcel.2011.07.035
34. YusufzaiTM, TagamiH, NakataniY, FelsenfeldG (2004) CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell 13: 291–298.
35. CavalliG (2007) Chromosome kissing. Curr Opin Genet Dev 17: 443–450 doi:10.1016/j.gde.2007.08.013
36. FraserP, BickmoreW (2007) Nuclear organization of the genome and the potential for gene regulation. Nature 447: 413–417 doi:10.1038/nature05916
37. YuW, GinjalaV, PantV, ChernukhinI, WhiteheadJ, et al. (2004) Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation. Nat Genet 36: 1105–1110 doi:10.1038/ng1426
38. BartkuhnM, StraubT, HeroldM, HerrmannM, RathkeC, et al. (2009) Active promoters and insulators are marked by the centrosomal protein 190. EMBO J 28: 877–888 doi:10.1038/emboj.2009.34
39. GerasimovaTI, LeiEP, BusheyAM, CorcesVG (2007) Coordinated control of dCTCF and gypsy chromatin insulators in Drosophila. Mol Cell 28: 761–772 doi:10.1016/j.molcel.2007.09.024
40. YangJ, CorcesVG (2012) Insulators, long-range interactions, and genome function. Curr Opin Genet Dev 22: 86–92 doi:10.1016/j.gde.2011.12.007
41. RathU, DingY, DengH, QiH, BaoX, et al. (2006) The chromodomain protein, Chromator, interacts with JIL-1 kinase and regulates the structure of Drosophila polytene chromosomes. J Cell Sci 119: 2332–2341 doi:10.1242/jcs.02960
42. GortchakovAA, EggertH, GanM, MattowJ, ZhimulevIF, et al. (2005) Chriz, a chromodomain protein specific for the interbands of Drosophila melanogaster polytene chromosomes. Chromosoma 114: 54–66 doi:10.1007/s00412-005-0339-3
43. RathU, WangD, DingY, XuYZ, QiH, et al. (2004) Chromator, a novel and essential chromodomain protein interacts directly with the putative spindle matrix protein skeletor. J Cell Biochem 93: 1033–1047 doi:10.1002/jcb.20243
44. MendjanS, TaipaleM, KindJ, HolzH, GebhardtP, et al. (2006) Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell 21: 811–823 doi:10.1016/j.molcel.2006.02.007
45. YaoC, DingY, CaiW, WangC, GirtonJ, et al. (2012) The chromodomain-containing NH(2)-terminus of Chromator interacts with histone H1 and is required for correct targeting to chromatin. Chromosoma 121: 209–220 doi:10.1007/s00412-011-0355-4
46. Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. New York: Springer.
47. SchwartzYB, Linder-BassoD, KharchenkoPV, TolstorukovMY, KimM, et al. (2012) Nature and function of insulator protein binding sites in the Drosophila genome. Genome Res 22: 2188–2198 doi:10.1101/gr.138156.112
48. KharchenkoPV, AlekseyenkoAA, SchwartzYB, MinodaA, RiddleNC, et al. (2011) Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471: 480–485 doi:10.1038/nature09725
49. KimSA, HeinzeKG, BaciaK, WaxhamMN, SchwilleP (2005) Two-photon cross-correlation analysis of intracellular reactions with variable stoichiometry. Biophys J 88: 4319–4336 doi:10.1529/biophysj.104.055319
50. SchwilleP, Meyer-AlmesFJ, RiglerR (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72: 1878–1886 doi:10.1016/S0006-3495(97)78833-7
51. BaciaK, KimSA, SchwilleP (2006) Fluorescence cross-correlation spectroscopy in living cells. Nat Methods 3: 83–89 doi:10.1038/nmeth822
52. MullerBK, ZaychikovE, BrauchleC, LambDC (2005) Pulsed interleaved excitation. Biophys J 89: 3508–3522 doi:10.1529/biophysj.105.064766
53. OlofssonL, MargeatE (2013) Pulsed interleaved excitation fluorescence spectroscopy with a supercontinuum source. Opt Express 21: 3370–3378.
54. Perez-TorradoR, YamadaD, DefossezPA (2006) Born to bind: the BTB protein-protein interaction domain. Bioessays 28: 1194–1202 doi:10.1002/bies.20500
55. StogiosPJ, DownsGS, JauhalJJ, NandraSK, PriveGG (2005) Sequence and structural analysis of BTB domain proteins. Genome Biol 6: R82 doi:10.1186/gb-2005-6-10-r82
56. KrissinelE, HenrickK (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372: 774–797 doi:10.1016/j.jmb.2007.05.022
57. AshkenazyH, ErezE, MartzE, PupkoT, Ben-TalN (2010) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Research 38: W529–W533 doi:10.1093/nar/gkq399
58. OliverD, SheehanB, SouthH, AkbariO, PaiCY (2010) The chromosomal association/dissociation of the chromatin insulator protein Cp190 of Drosophila melanogaster is mediated by the BTB/POZ domain and two acidic regions. BMC Cell Biol 11: 101 doi:10.1186/1471-2121-11-101
59. DeanA (2011) In the loop: long range chromatin interactions and gene regulation. Brief Funct Genomics 10: 3–10 doi:10.1093/bfgp/elq033
60. KyrchanovaO, ChetverinaD, MaksimenkoO, KullyevA, GeorgievP (2008) Orientation-dependent interaction between Drosophila insulators is a property of this class of regulatory elements. Nucleic Acids Research 36: 7019–7028 doi:10.1093/nar/gkn781
61. MukhopadhyayS, SchedlP, StuditskyVM, SenguptaAM (2011) Theoretical analysis of the role of chromatin interactions in long-range action of enhancers and insulators. Proc Natl Acad Sci USA 108: 19919–19924 doi:10.1073/pnas.1103845108
62. WallaceJA, FelsenfeldG (2007) We gather together: insulators and genome organization. Curr Opin Genet Dev 17: 400–407 doi:10.1016/j.gde.2007.08.005
63. BardwellVJ, TreismanR (1994) The POZ domain: a conserved protein-protein interaction motif. Genes Dev 8: 1664–1677.
64. LoursC, BardotO, GodtD, LaskiFA, CoudercJL (2003) The Drosophila melanogaster BTB proteins bric a brac bind DNA through a composite DNA binding domain containing a pipsqueak and an AT-Hook motif. Nucleic Acids Research 31: 5389–5398.
65. ZollmanS, GodtD, PriveGG, CoudercJL, LaskiFA (1994) The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proc Natl Acad Sci USA 91: 10717–10721.
66. BonchukA, DenisovS, GeorgievP, MaksimenkoO (2011) Drosophila BTB/POZ domains of “ttk group” can form multimers and selectively interact with each other. J Mol Biol 412: 423–436 doi:10.1016/j.jmb.2011.07.052
67. MohanM, BartkuhnM, HeroldM, PhilippenA, HeinlN, et al. (2007) The Drosophila insulator proteins CTCF and CP190 link enhancer blocking to body patterning. EMBO J 26: 4203–4214 doi:10.1038/sj.emboj.7601851
68. OngCT, Van BortleK, RamosE, CorcesVG (2013) Poly(ADP-ribosyl)ation Regulates Insulator Function and Intrachromosomal Interactions in Drosophila. Cell 155: 148–159 doi:10.1016/j.cell.2013.08.052
69. LeiEP, CorcesVG (2006) RNA interference machinery influences the nuclear organization of a chromatin insulator. Nat Genet 38: 936–941 doi:10.1038/ng1850
70. BrayerKJ, SegalDJ (2008) Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains. Cell Biochem Biophys 50: 111–131 doi:10.1007/s12013-008-9008-5
71. AhmadKF, MelnickA, LaxS, BouchardD, LiuJ, et al. (2003) Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. Mol Cell 12: 1551–1564.
72. GhetuAF, CorcoranCM, CerchiettiL, BardwellVJ, MelnickA, et al. (2008) Structure of a BCOR corepressor peptide in complex with the BCL6 BTB domain dimer. Mol Cell 29: 384–391 doi:10.1016/j.molcel.2007.12.026
73. GurudattaBV, CorcesVG (2009) Chromatin insulators: lessons from the fly. Brief Funct Genomic Proteomic 8: 276–282 doi:10.1093/bfgp/elp032
74. LiY, CaiW, WangC, YaoC, BaoX, et al. (2013) Domain Requirements of the JIL-1 Tandem Kinase for Histone H3 Serine 10 Phosphorylation and Chromatin Remodeling in Vivo. J Biol Chem 288: 19441–19449 doi:10.1074/jbc.M113.464271
75. RegnardC, StraubT, MitterwegerA, DahlsveenIK, FabianV, et al. (2011) Global analysis of the relationship between JIL-1 kinase and transcription. PLoS Genet 7: e1001327 doi:10.1371/journal.pgen.1001327
76. WangC, CaiW, LiY, DengH, BaoX, et al. (2011) The epigenetic H3S10 phosphorylation mark is required for counteracting heterochromatic spreading and gene silencing in Drosophila melanogaster. J Cell Sci 124: 4309–4317 doi:10.1242/jcs.092585
77. JiangN, EmberlyE, CuvierO, HartCM (2009) Genome-wide mapping of boundary element-associated factor (BEAF) binding sites in Drosophila melanogaster links BEAF to transcription. Mol Cell Biol 29: 3556–3568 doi:10.1128/MCB.01748-08
78. FilippovaGN, FagerlieS, KlenovaEM, MyersC, DehnerY, et al. (1996) An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol Cell Biol 16: 2802–2813.
79. YangJ, SungE, Donlin-AspPG, CorcesVG (2013) A subset of Drosophila Myc sites remain associated with mitotic chromosomes colocalized with insulator proteins. Nat Commun 4: 1464 doi:10.1038/ncomms2469
80. GurudattaBV, YangJ, Van BortleK, Donlin-AspPG, CorcesVG (2013) Dynamic changes in the genomic localization of DNA replication-related element binding factor during the cell cycle. Cell Cycle 12: 1605–1615 doi:10.4161/cc.24742
81. PtacinJL, NollmannM, BeckerEC, CozzarelliNR, PoglianoK, et al. (2008) Sequence-directed DNA export guides chromosome translocation during sporulation in Bacillus subtilis. Nat Struct Mol Biol 15: 485–493 doi:10.1038/nsmb.1412
82. HartCM, CuvierO, LaemmliUK (1999) Evidence for an antagonistic relationship between the boundary element-associated factor BEAF and the transcription factor DREF. Chromosoma 108: 375–383.
83. JeeJ, RozowskyJ, YipKY, LochovskyL, BjornsonR, et al. (2011) ACT: aggregation and correlation toolbox for analyses of genome tracks. Bioinformatics 27: 1152–1154 doi:10.1093/bioinformatics/btr092
84. RoyS, ErnstJ, KharchenkoPV, KheradpourP, NegreN, et al. (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330: 1787–1797 doi:10.1126/science.1198374
85. QuinlanAR, HallIM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841–842 doi:10.1093/bioinformatics/btq033
86. WinnMD, BallardCC, CowtanKD, DodsonEJ, EmsleyP, et al. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67: 235–242 doi:10.1107/S0907444910045749
87. AdamsPD, AfoninePV, BunkocziG, ChenVB, DavisIW, et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66: 213–221 doi:10.1107/S0907444909052925
88. PonsJL, LabesseG (2009) @TOME-2: a new pipeline for comparative modeling of protein-ligand complexes. Nucleic Acids Research 37: W485–W491 doi:10.1093/nar/gkp368
89. EmsleyP, CowtanK (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132 doi:10.1107/S0907444904019158
90. HacAE, SeegerHM, FidorraM, HeimburgT (2005) Diffusion in two-component lipid membranes–a fluorescence correlation spectroscopy and monte carlo simulation study. Biophys J 88: 317–333 doi:10.1529/biophysj.104.040444
91. SackstederCA, WhittierJE, XiongY, LiJ, GalevaNA, et al. (2006) Tertiary structural rearrangements upon oxidation of Methionine145 in calmodulin promotes targeted proteasomal degradation. Biophys J 91: 1480–1493 doi:10.1529/biophysj.106.086033
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 8
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Meta-Analysis of Genome-Wide Association Studies in African Americans Provides Insights into the Genetic Architecture of Type 2 Diabetes
- KDM6 Demethylase Independent Loss of Histone H3 Lysine 27 Trimethylation during Early Embryonic Development
- The RNA Helicases AtMTR4 and HEN2 Target Specific Subsets of Nuclear Transcripts for Degradation by the Nuclear Exosome in
- EF-P Dependent Pauses Integrate Proximal and Distal Signals during Translation