#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4


Notch signalling relies on binding of a ligand to a Notch receptor, both residing on the surfaces of neighbouring cells. This interaction forwards a signal into the receptor-expressing cell, this way coordinating cells in many biological processes such as the segmentation of the axial skeleton. Mammals possess four Notch-activating ligands–including DLL1 and DLL4 -expressed in diverse, partially overlapping regions. Whether the different ligands trigger quantitatively or qualitatively distinct Notch responses is largely unknown. In order to directly compare both ligands we generated transgenic mice that express DLL1 or DLL4 in identical patterns. These mice uncover that only DLL1 but not DLL4 can mediate regular segmentation of the embryo. In experiments with cultured cells expressing either ligand and Notch, we found that the functional difference observed is unlikely to depend on differences in the activation of Notch. Rather, the unsuspected but strong difference between both ligands in cis-inhibition, i.e. repression of Notch by a ligand expressed in the same cell as the receptor, a process described in the fruitfly but not in mammals and not for DLL4 provides a possible explanation for the divergence in tissues that coexpress ligand and receptor.


Vyšlo v časopise: Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4. PLoS Genet 11(6): e32767. doi:10.1371/journal.pgen.1005328
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005328

Souhrn

Notch signalling relies on binding of a ligand to a Notch receptor, both residing on the surfaces of neighbouring cells. This interaction forwards a signal into the receptor-expressing cell, this way coordinating cells in many biological processes such as the segmentation of the axial skeleton. Mammals possess four Notch-activating ligands–including DLL1 and DLL4 -expressed in diverse, partially overlapping regions. Whether the different ligands trigger quantitatively or qualitatively distinct Notch responses is largely unknown. In order to directly compare both ligands we generated transgenic mice that express DLL1 or DLL4 in identical patterns. These mice uncover that only DLL1 but not DLL4 can mediate regular segmentation of the embryo. In experiments with cultured cells expressing either ligand and Notch, we found that the functional difference observed is unlikely to depend on differences in the activation of Notch. Rather, the unsuspected but strong difference between both ligands in cis-inhibition, i.e. repression of Notch by a ligand expressed in the same cell as the receptor, a process described in the fruitfly but not in mammals and not for DLL4 provides a possible explanation for the divergence in tissues that coexpress ligand and receptor.


Zdroje

1. Louvi A, Artavanis-Tsakonas S. Notch and disease: a growing field. Seminars in Cell & Developmental Biology. 2012;23: 473–480. doi: 10.1016/j.semcdb.2012.02.005

2. Koch U, Radtke F. Mechanisms of T Cell Development and Transformation. Annu Rev Cell Dev Biol. 2011;27: 539–562. doi: 10.1146/annurev-cellbio-092910-154008 21740230

3. Bolós V, Grego-Bessa J, la Pompa de JL. Notch signaling in development and cancer. Endocrine Reviews. 2007;28: 339–363. doi: 10.1210/er.2006-0046 17409286

4. Gridley T. Notch signaling in vascular development and physiology. Development. 2007;134: 2709–2718. doi: 10.1242/dev.004184 17611219

5. Yoon K, Gaiano N. Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci. 2005;8: 709–715. doi: 10.1038/nn1475 15917835

6. Radtke F, Fasnacht N, MacDonald HR. Notch signaling in the immune system. Immunity. 2010;32: 14–27. doi: 10.1016/j.immuni.2010.01.004 20152168

7. Artavanis-Tsakonas S, Matsuno K, Fortini ME. Notch signaling. Science. 1995.

8. Fortini ME, Artavanis-Tsakonas S. The suppressor of hairless protein participates in notch receptor signaling. Cell. 1994;79: 273–282. 7954795

9. Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A. Signalling downstream of activated mammalian Notch. Nature. 1995;377: 355–358. doi: 10.1038/377355a0 7566092

10. Jarriault S, Le Bail O, Hirsinger E, Pourquie O, Logeat F, Strong CF, et al. Delta-1 activation of notch-1 signaling results in HES-1 transactivation. Molecular and Cellular Biology. 1998;18: 7423–7431. 9819428

11. Kopan R, Schroeter EH, Weintraub H, Nye JS. Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc Natl Acad Sci USA. 1996;93: 1683–1688. 8643690

12. Kidd S, Lieber T, Young MW. Ligand-induced cleavage and regulation of nuclear entry of Notch in Drosophila melanogaster embryos. Genes Dev. 1998;12: 3728–3740. 9851979

13. Schroeter EH, Kisslinger JA, Kopan R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. 1998;393: 382–386. doi: 10.1038/30756 9620803

14. Struhl G, Adachi A. Nuclear access and action of notch in vivo. Cell. 1998;93: 649–660. 9604939

15. Micchelli CA, Rulifson EJ, Blair SS. The function and regulation of cut expression on the wing margin of Drosophila: Notch, Wingless and a dominant negative role for Delta and Serrate. Development. 1997;124: 1485–1495. 9108365

16. de Celis JF, Bray S. Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development. 1997;124: 3241–3251. 9310319

17. Miller AC, Lyons EL, Herman TG. cis-Inhibition of Notch by endogenous Delta biases the outcome of lateral inhibition. Curr Biol. 2009;19: 1378–1383. doi: 10.1016/j.cub.2009.06.042 19631544

18. del Álamo D, Rouault H, Schweisguth F. Mechanism and significance of cis-inhibition in Notch signalling. Curr Biol. 2011;21: R40–7. doi: 10.1016/j.cub.2010.10.034 21215938

19. Andrawes MB, Xu X, Liu H, Ficarro SB, Marto JA, Aster JC, et al. Intrinsic Selectivity of Notch 1 for Delta-like 4 Over Delta-like 1. Journal of Biological Chemistry. 2013;288: 25477–25489. doi: 10.1074/jbc.M113.454850 23839946

20. Ladi E, Nichols JT, Ge W, Miyamoto A, Yao C, Yang L-T, et al. The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. The Journal of Cell Biology. Rockefeller Univ Press; 2005;170: 983–992. doi: 10.1083/jcb.200503113 16144902

21. Geffers I, Serth K, Chapman G, Jaekel R, Schuster-Gossler K, Cordes R, et al. Divergent functions and distinct localization of the Notch ligands DLL1 and DLL3 in vivo. The Journal of Cell Biology. 2007;178: 465–476. doi: 10.1083/jcb.200702009 17664336

22. Shutter JR, Scully S, Fan W, Richards WG, Kitajewski J, Deblandre GA, et al. Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev. 2000;14: 1313–1318. 10837024

23. Shimizu K, Chiba S, Kumano K, Hosoya N, Takahashi T, Kanda Y, et al. Mouse jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods. J Biol Chem. 1999;274: 32961–32969. 10551863

24. Cordle J, Johnson S, Tay JZY, Roversi P, Wilkin MB, de Madrid BH, et al. A conserved face of the Jagged/Serrate DSL domain is involved in Notch trans-activation and cis-inhibition. Nat Struct Mol Biol. 2008;15: 849–857. doi: 10.1038/nsmb.1457 18660822

25. Schröder N, Gossler A. Expression of Notch pathway components in fetal and adult mouse small intestine. GEP. 2002;2: 247–250. doi: 10.1016/S1567-133X(02)00060-1 12617809

26. Benedito R, Duarte A. Expression of Dll4 during mouse embryogenesis suggests multiple developmental roles. GEP. 2005;5: 750–755. doi: 10.1016/j.modgep.2005.04.004 15923152

27. Pellegrinet L, Rodilla V, Liu Z, Chen S, Koch U, Espinosa L, et al. Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology. 2011;140: 1230–1240.e1–7. doi: 10.1053/j.gastro.2011.01.005 21238454

28. Beckers J, Clark A, Wünsch K, Hrabe de Angelis M, Gossler A. Expression of the mouse Delta1 gene during organogenesis and fetal development. MOD. 1999;84: 165–168. 10473134

29. Sörensen I, Adams RH, Gossler A. DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. Blood. American Society of Hematology; 2009;113: 5680–5688. doi: 10.1182/blood-2008-08-174508 19144989

30. Schmitt TM. Maintenance of T Cell Specification and Differentiation Requires Recurrent Notch Receptor-Ligand Interactions. JEM. 2004;200: 469–479. doi: 10.1084/jem.20040394 15314075

31. Hozumi K, Mailhos C, Negishi N, Hirano K-I, Yahata T, Ando K, et al. Delta-like 4 is indispensable in thymic environment specific for T cell development. JEM. 2008;205: 2507–2513. doi: 10.1084/jem.20080134 18824583

32. Hozumi K, Negishi N, Suzuki D, Abe N, Sotomaru Y, Tamaoki N, et al. Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nat Immunol. 2004;5: 638–644. doi: 10.1038/ni1075 15146182

33. Mohtashami M, Shah DK, Nakase H, Kianizad K, Petrie HT, Zuniga-Pflucker JC. Direct Comparison of Dll1- and Dll4-Mediated Notch Activation Levels Shows Differential Lymphomyeloid Lineage Commitment Outcomes. The Journal of Immunology. 2010;185: 867–876. doi: 10.4049/jimmunol.1000782 20548034

34. Besseyrias V, Fiorini E, Strobl LJ, Zimber-Strobl U, Dumortier A, Koch U, et al. Hierarchy of Notch-Delta interactions promoting T cell lineage commitment and maturation. J Exp Med. Rockefeller Univ Press; 2007;204: 331–343. doi: 10.1084/jem.20061442 17261636

35. Cappellari O, Benedetti S, Innocenzi A, Tedesco FS, Moreno-Fortuny A, Ugarte G, et al. Dll4 and PDGF-BB ConvertCommitted Skeletal Myoblasts to Pericytes without Erasing Their Myogenic Memory. Dev Cell. Elsevier; 2013;24: 586–599. doi: 10.1016/j.devcel.2013.01.022 23477786

36. Bettenhausen B, Hrabe de Angelis M, Simon D, Guénet JL, Gossler A. Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development. 1995;121: 2407–2418. 7671806

37. Schuster-Gossler K, Cordes R, Gossler A. Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants. Proc Natl Acad Sci USA. 2007;104: 537–542. doi: 10.1073/pnas.0608281104 17194759

38. Hrabe de Angelis M, McIntyre J, Gossler A. Maintenance of somite borders in mice requires the Delta homologue DII1. Nature. 1997;386: 717–721. doi: 10.1038/386717a0 9109488

39. Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E, et al. Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev. 2004;18: 2474–2478. doi: 10.1101/gad.1239004 15466159

40. Krebs LT. Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev. 2004;18: 2469–2473. doi: 10.1101/gad.1239204 15466160

41. Farin HF, Lüdtke TH-W, Schmidt MK, Placzko S, Schuster-Gossler K, Petry M, et al. Tbx2 terminates shh/fgf signaling in the developing mouse limb bud by direct repression of gremlin1. Zeller R, editor. PLoS Genet. Public Library of Science; 2013;9: e1003467. doi: 10.1371/journal.pgen.1003467 23633963

42. Redeker C, Schuster-Gossler K, Kremmer E, Gossler A. Normal development in mice over-expressing the intracellular domain of DLL1 argues against reverse signaling by DLL1 in vivo. Henrique D, editor. PLoS ONE. Public Library of Science; 2013;8: e79050. doi: 10.1371/journal.pone.0079050 24167636

43. Luche H, Weber O, Nageswara Rao T, Blum C, Fehling HJ. Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies. Eur J Immunol. 2007;37: 43–53. doi: 10.1002/eji.200636745 17171761

44. Bronson SK, Plaehn EG, Kluckman KD, Hagaman JR, Maeda N, Smithies O. Single-copy transgenic mice with chosen-site integration. Proc Natl Acad Sci USA. 1996;93: 9067–9072. 8799155

45. de Vries WN, Binns LT, Fancher KS, Dean J, Moore R, Kemler R, et al. Expression of Cre recombinase in mouse oocytes: a means to study maternal effect genes. genesis. 2000;26: 110–112. 10686600

46. Feller J, Schneider A, Schuster-Gossler K, Gossler A. Noncyclic Notch activity in the presomitic mesoderm demonstrates uncoupling of somite compartmentalization and boundary formation. Genes Dev. 2008;22: 2166–2171. doi: 10.1101/gad.480408 18708576

47. Neidhardt LM, Kispert A, Herrmann BG. A mouse gene of the paired-related homeobox class expressed in the caudal somite compartment and in the developing vertebral column, kidney and nervous system. Development Genes and Evolution. Springer-Verlag; 1997;207: 330–339. doi: 10.1007/s004270050120

48. Mansouri A, Yokota Y, Wehr R, Copeland NG, Jenkins NA, Gruss P. Paired-related murine homeobox gene expressed in the developing sclerotome, kidney, and nervous system. Dev Dyn. Wiley‐Liss, Inc; 1997;210: 53–65. doi: 10.1002/(SICI)1097-0177(199709)210:1<53::AID-AJA6>3.0.CO;2–0 9286595

49. Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 2000;14: 1343–1352. doi: 10.1101/gad.14.11.1343 10837027

50. Ramos C, Rocha S, Gaspar C, Henrique D. Two Notch Ligands, Dll1 and Jag1, Are Differently Restricted in Their Range of Action to Control Neurogenesis in the Mammalian Spinal Cord. Schmidt, editor. PLoS ONE. 2010;5: e15515. doi: 10.1371/journal.pone.0015515 21124801

51. Rocha SF, Lopes SS, Gossler A, Henrique D. Dll1 and Dll4 function sequentially in the retina and pV2 domain of the spinal cord to regulate neurogenesis and create cell diversity. Dev Biol. 2009;328: 54–65. doi: 10.1016/j.ydbio.2009.01.011 19389377

52. Barrantes IB, Elia AJ, Wünsch K, Hrabe de Angelis MH, Mak TW, Rossant J, et al. Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse. Curr Biol. 1999;9: 470–480. 10330372

53. Cordes R, Schuster-Gossler K, Serth K, Gossler A. Specification of vertebral identity is coupled to Notch signalling and the segmentation clock. Development. 2004;131: 1221–1233. doi: 10.1242/dev.01030 14960495

54. Arnold HH, Braun T. Genetics of muscle determination and development. Curr Top Dev Biol. 2000;48: 129–164. 10635459

55. Luo H, Jin K, Xie Z, Qiu F, Li S, Zou M, et al. Forkhead box N4 (Foxn4) activates Dll4-Notch signaling to suppress photoreceptor cell fates of early retinal progenitors. Proc Natl Acad Sci USA. National Acad Sciences; 2012;109: E553–62. doi: 10.1073/pnas.1115767109 22323600

56. Minoguchi S, Taniguchi Y, Kato H, Okazaki T, Strobl LJ, Zimber-Strobl U, et al. RBP-L, a transcription factor related to RBP-Jkappa. Molecular and Cellular Biology. 1997;17: 2679–2687. 9111338

57. Keravala A, Calos MP. Site-specific chromosomal integration mediated by phiC31 integrase. Methods Mol Biol. Totowa, NJ: Humana Press; 2008;435: 165–173. doi: 10.1007/978-1-59745-232-8_12 18370075

58. Moloney DJ, Panin VM, Johnston SH, Chen J, Shao L, Wilson R, et al. Fringe is a glycosyltransferase that modifies Notch. Nature. 2000;406: 369–375. doi: 10.1038/35019000 10935626

59. Panin VM, Papayannopoulos V, Wilson R, Irvine KD. Fringe modulates Notch-ligand interactions. Nature. 1997;387: 908–912. doi: 10.1038/43191 9202123

60. Cohen B, Bashirullah A, Dagnino L, Campbell C, Fisher WW, Leow CC, et al. Fringe boundaries coincide with Notch-dependent patterning centres in mammals and alter Notch-dependent development in Drosophila. Nat Genet. 1997;16: 283–288. doi: 10.1038/ng0797-283 9207795

61. Mitsiadis TA, Henrique D, Thesleff I, Lendahl U. Mouse Serrate-1 (Jagged-1): expression in the developing tooth is regulated by epithelial-mesenchymal interactions and fibroblast growth factor-4. Development. 1997;124: 1473–1483. 9108364

62. Benedito R, Roca C, Sörensen I, Adams S, Gossler A, Fruttiger M, et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 2009;137: 1124–1135. doi: 10.1016/j.cell.2009.03.025 19524514

63. Golson ML, Le Lay J, Gao N, Brämswig N, Loomes KM, Oakey R, et al. Jagged1 is a competitive inhibitor of Notch signaling in the embryonic pancreas. MOD. Elsevier Ireland Ltd; 2009;126: 687–699. doi: 10.1016/j.mod.2009.05.005 19501159

64. Okubo Y, Sugawara T, Abe-Koduka N, Kanno J, Kimura A, Saga Y. Lfng regulates the synchronized oscillation of the mouse segmentation clock via trans-repression of Notch signalling. Nature Communications. 2012;3: 1141. doi: 10.1038/ncomms2133 23072809

65. Glittenberg M, Pitsouli C, Garvey C, Delidakis C, Bray S. Role of conserved intracellular motifs in Serrate signalling, cis-inhibition and endocytosis. The EMBO Journal. 2006;25: 4697–4706. doi: 10.1038/sj.emboj.7601337 17006545

66. Fleming RJ, Hori K, Sen A, Filloramo GV, Langer JM, Obar RA, et al. An extracellular region of Serrate is essential for ligand-induced cis-inhibition of Notch signaling. Development. 2013;140: 2039–2049. doi: 10.1242/dev.087916 23571220

67. Hiratochi M, Nagase H, Kuramochi Y, Koh CS, Ohkawara T, Nakayama K. The Delta intracellular domain mediates TGF- /Activin signaling through binding to Smads and has an important bi-directional function in the Notch-Delta signaling pathway. Nuc Acids Res. 2007;35: 912–922. doi: 10.1093/nar/gkl1128 17251195

68. Kolev V, Kacer D, Trifonova R, Small D, Duarte M, Soldi R, et al. The intracellular domain of Notch ligand Delta1 induces cell growth arrest. FEBS Letters. 2005;579: 5798–5802. doi: 10.1016/j.febslet.2005.09.042 16225865

69. Chitnis A, Henrique D, Lewis J, Ish-Horowicz D, Kintner C. Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta. Nature. 1995;375: 761–766. doi: 10.1038/375761a0 7596407

70. Henrique D, Hirsinger E, Adam J, Le Roux I, Pourquie O, Ish-Horowicz D, et al. Maintenance of neuroepithelial progenitor cells by Delta-Notch signalling in the embryonic chick retina. Curr Biol. 1997;7: 661–670. 9285721

71. Lowell S, Jones P, Le Roux I, Dunne J, Watt FM. Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters. Curr Biol. 2000;10: 491–500. 10801437

72. Sakamoto K, Ohara O, Takagi M, Takeda S, Katsube K-I. Intracellular Cell-Autonomous Association of Notch and Its Ligands: A Novel Mechanism of Notch Signal Modification. Dev Biol. 2002;241: 313–326. doi: 10.1006/dbio.2001.0517 11784114

73. Franklin JL, Berechid BE, Cutting FB, Presente A, Chambers CB, Foltz DR, et al. Autonomous and non-autonomous regulation of mammalian neurite development by Notch1 and Delta1. Curr Biol. 1999;9: 1448–1457. 10607588

74. Itoh M, Kim C-H, Palardy G, Oda T, Jiang Y-J, Maust D, et al. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev Cell. 2003;4: 67–82. 12530964

75. Klein T, Brennan K, Arias AM. An intrinsic dominant negative activity of serrate that is modulated during wing development in Drosophila. Dev Biol. 1997;189: 123–134. doi: 10.1006/dbio.1997.8564 9281342

76. Li Y, Baker NE. The roles of cis-inactivation by Notch ligands and of neuralized during eye and bristle patterning in Drosophila. BMC Dev Biol. BioMed Central Ltd; 2004;4: 5. doi: 10.1186/1471-213X-4-5 15113404

77. Teppner I, Becker S, de Angelis MH, Gossler A, Beckers J. Compartmentalised expression of Delta-like 1 in epithelial somites is required for the formation of intervertebral joints. BMC Dev Biol. 2007;7: 68. doi: 10.1186/1471-213X-7-68 17572911

78. Gossler A, Tam P. Somitogenesis: segmentation of the paraxial mesoderm and the delineation of tissue compartments. In: Rossant J, Tam PPL, editors. Mouse Development. San Diego: 2002. pp. 127–149.

79. Lewis J. Notch signalling and the control of cell fate choices in vertebrates. Seminars in Cell & Developmental Biology. 1998;9: 583–589. doi: 10.1006/scdb.1998.0266

80. Formosa-Jordan P, Ibañes M. Competition in notch signaling with cis enriches cell fate decisions. PLoS ONE. 2013;9: e95744–e95744. doi: 10.1371/journal.pone.0095744

81. Mourikis P, Tajbakhsh S. Distinct contextual roles for Notch signalling in skeletal muscle stem cells. BMC Dev Biol. BioMed Central Ltd; 2014;14: 2. doi: 10.1186/1471-213X-14-2 24472470

82. Cheng H- T, Kim M, Valerius MT, Surendran K, Schuster-Gossler K, Gossler A, et al. Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development. The Company of Biologists Limited; 2007;134: 801–811. doi: 10.1242/dev.02773 17229764

83. Diez H, Fischer A, Winkler A, Hu C-J, Hatzopoulos AK, Breier G, et al. Hypoxia-mediated activation of Dll4-Notch-Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate. Experimental Cell Research. 2007;313: 1–9. doi: 10.1016/j.yexcr.2006.09.009 17045587

84. Doi H, Iso T, Sato H, Yamazaki M, Matsui H, Tanaka T, et al. Jagged1-selective notch signaling induces smooth muscle differentiation via a RBP-Jkappa-dependent pathway. J Biol Chem. American Society for Biochemistry and Molecular Biology; 2006;281: 28555–28564. doi: 10.1074/jbc.M602749200 16867989

85. Hicks C, Johnston SH, diSibio G, Collazo A, Vogt TF, Weinmaster G. Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. Nat Cell Biol. 2000;2: 515–520. doi: 10.1038/35019553 10934472

86. Yuan JS, Tan JB, Visan I, Matei IR, Urbanellis P, Xu K, et al. Lunatic Fringe prolongs Delta/Notch-induced self-renewal of committed αβ T-cell progenitors. Blood. 2011;117: 1184–1195. doi: 10.1182/blood-2010-07-296616 21097675

87. Morimoto M, Takahashi Y, Endo M, Saga Y. The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity. Nature. 2005;435: 354–359. doi: 10.1038/nature03591 15902259

88. Schuster-Gossler K, Harris B, Johnson KR, Serth J, Gossler A. Notch signalling in the paraxial mesoderm is most sensitive to reduced Pofut1 levels during early mouse development. BMC Dev Biol. BioMed Central Ltd; 2009;9: 6. doi: 10.1186/1471-213X-9-6 19161597

89. Rowan S, Cepko CL. Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Dev Biol. 2004;271: 388–402. doi: 10.1016/j.ydbio.2004.03.039 15223342

90. Hooper M, Hardy K, Handyside A, Hunter S, Monk M. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature. 1987;326: 292–295. doi: 10.1038/326292a0 3821905

91. Wilkinson DG, Nieto MA. Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Meth Enzymol. 1993;225: 361–373. 8231863

92. Braun T, Bober E, Buschhausen-Denker G, Kohtz S, Grzeschik KH, Arnold HH, et al. Differential expression of myogenic determination genes in muscle cells: possible autoactivation by the Myf gene products. The EMBO Journal. 1989;8: 3617–3625. 2583111

93. Bone RA, Bailey CSL, Wiedermann G, Ferjentsik Z, Appleton PL, Murray PJ, et al. Spatiotemporal oscillations of Notch1, Dll1 and NICD are coordinated across the mouse PSM. Development. 2014;141: 4806–4816. doi: 10.1242/dev.115535 25468943

94. Kranz A, Fu J, Duerschke K, Weidlich S, Naumann R, Stewart AF, et al. An improved Flp deleter mouse in C57Bl/6 based on Flpo recombinase. genesis. 2010;48: 512–520. doi: 10.1002/dvg.20641 20506501

95. Braune E-B, Schuster-Gossler K, Lyszkiewicz M, Serth K, Preusse K, Madlung J, et al. S/T Phosphorylation of DLL1 Is Required for Full Ligand Activity In Vitro but Dispensable for DLL1 Function In Vivo during Embryonic Patterning and Marginal Zone B Cell Development. Molecular and Cellular Biology. 2014;34: 1221–1233. doi: 10.1128/MCB.00965-13 24449764

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#