Leveraging Identity-by-Descent for Accurate Genotype Inference in Family Sequencing Data
To identify disease variants that occur less frequently in population, sequencing families in which multiple individuals are affected is more powerful due to the enrichment of causal variants. An important step in such studies is to infer individual genotypes from sequencing data. Existing methods do not utilize full familial transmission information and therefore result in reduced accuracy of inferred genotypes. In this study we describe a new method that infers shared genetic materials among family members and then incorporate the shared genomic information in a novel algorithm that can accurately infer genotypes. Our method is particularly advantageous when inferring low frequency variants with fewer sequence data, making it effective in analyzing genome-wide sequence data. We implemented the algorithm in a computationally efficient tool to facilitate cost-effective sequencing in families for identifying disease genetic variants.
Vyšlo v časopise:
Leveraging Identity-by-Descent for Accurate Genotype Inference in Family Sequencing Data. PLoS Genet 11(6): e32767. doi:10.1371/journal.pgen.1005271
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1005271
Souhrn
To identify disease variants that occur less frequently in population, sequencing families in which multiple individuals are affected is more powerful due to the enrichment of causal variants. An important step in such studies is to infer individual genotypes from sequencing data. Existing methods do not utilize full familial transmission information and therefore result in reduced accuracy of inferred genotypes. In this study we describe a new method that infers shared genetic materials among family members and then incorporate the shared genomic information in a novel algorithm that can accurately infer genotypes. Our method is particularly advantageous when inferring low frequency variants with fewer sequence data, making it effective in analyzing genome-wide sequence data. We implemented the algorithm in a computationally efficient tool to facilitate cost-effective sequencing in families for identifying disease genetic variants.
Zdroje
1. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, et al. (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 42: 790–793. doi: 10.1038/ng.646 20711175
2. Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, et al. (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42: 30–35. doi: 10.1038/ng.499 19915526
3. Need AC, Shashi V, Hitomi Y, Schoch K, Shianna KV, et al. (2012) Clinical application of exome sequencing in undiagnosed genetic conditions. J Med Genet 49: 353–361. doi: 10.1136/jmedgenet-2012-100819 22581936
4. Li B, Leal SM (2008) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83: 311–321. doi: 10.1016/j.ajhg.2008.06.024 18691683
5. Li B, Leal SM (2009) Discovery of rare variants via sequencing: implications for the design of complex trait association studies. PLoS Genet 5: e1000481. doi: 10.1371/journal.pgen.1000481 19436704
6. Lange LA, Hu Y, Zhang H, Xue C, Schmidt EM, et al. (2014) Whole-Exome Sequencing Identifies Rare and Low-Frequency Coding Variants Associated with LDL Cholesterol. Am J Hum Genet 94: 233–245. doi: 10.1016/j.ajhg.2014.01.010 24507775
7. Liu L, Sabo A, Neale BM, Nagaswamy U, Stevens C, et al. (2013) Analysis of rare, exonic variation amongst subjects with autism spectrum disorders and population controls. PLoS Genet 9: e1003443. doi: 10.1371/journal.pgen.1003443 23593035
8. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, et al. (2014) A polygenic burden of rare disruptive mutations in schizophrenia. Nature.
9. Timms AE, Dorschner MO, Wechsler J, Choi KY, Kirkwood R, et al. (2013) Support for the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia from exome sequencing in multiplex families. JAMA Psychiatry 70: 582–590. doi: 10.1001/jamapsychiatry.2013.1195 23553203
10. Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, et al. (2014) Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease. Nature 505: 550–554. doi: 10.1038/nature12825 24336208
11. Rosenthal EA, Ranchalis J, Crosslin DR, Burt A, Brunzell JD, et al. (2013) Joint linkage and association analysis with exome sequence data implicates SLC25A40 in hypertriglyceridemia. Am J Hum Genet 93: 1035–1045. doi: 10.1016/j.ajhg.2013.10.019 24268658
12. Li B, Chen W, Zhan X, Busonero F, Sanna S, et al. (2012) A likelihood-based framework for variant calling and de novo mutation detection in families. PLoS Genet 8: e1002944. doi: 10.1371/journal.pgen.1002944 23055937
13. Peng G, Fan Y, Palculict TB, Shen P, Ruteshouser EC, et al. (2013) Rare variant detection using family-based sequencing analysis. Proc Natl Acad Sci U S A 110: 3985–3990. doi: 10.1073/pnas.1222158110 23426633
14. Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81: 1084–1097. 17924348
15. Li Y, Sidore C, Kang HM, Boehnke M, Abecasis GR (2011) Low-coverage sequencing: implications for design of complex trait association studies. Genome Res 21: 940–951. doi: 10.1101/gr.117259.110 21460063
16. O'Connell J, Gurdasani D, Delaneau O, Pirastu N, Ulivi S, et al. (2014) A general approach for haplotype phasing across the full spectrum of relatedness. PLoS Genet 10: e1004234. doi: 10.1371/journal.pgen.1004234 24743097
17. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, et al. (2011) The variant call format and VCFtools. Bioinformatics 27: 2156–2158. doi: 10.1093/bioinformatics/btr330 21653522
18. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18: 1851–1858. doi: 10.1101/gr.078212.108 18714091
19. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43: 491–498. doi: 10.1038/ng.806 21478889
20. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079. doi: 10.1093/bioinformatics/btp352 19505943
21. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20: 1297–1303. doi: 10.1101/gr.107524.110 20644199
22. Lander ES, Green P (1987) Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci U S A 84: 2363–2367. 3470801
23. Rabiner L (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77: 257–286.
24. International HapMap C, Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, et al. (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467: 52–58. doi: 10.1038/nature09298 20811451
25. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, et al. (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491: 56–65. doi: 10.1038/nature11632 23128226
26. Hu Y, Willer C, Zhan X, Kang HM, Abecasis GR (2013) Accurate local-ancestry inference in exome-sequenced admixed individuals via off-target sequence reads. Am J Hum Genet 93: 891–899. doi: 10.1016/j.ajhg.2013.10.008 24210252
27. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 559–575. 17701901
28. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760. doi: 10.1093/bioinformatics/btp324 19451168
29. Mathieson I, McVean G (2012) Differential confounding of rare and common variants in spatially structured populations. Nat Genet 44: 243–246. doi: 10.1038/ng.1074 22306651
30. Chen W, Li B, Zeng Z, Sanna S, Sidore C, et al. (2013) Genotype calling and haplotyping in parent-offspring trios. Genome Res 23: 142–151. doi: 10.1101/gr.142455.112 23064751
31. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58: 1347–1363. 8651312
32. Kruglyak L, Lander ES (1998) Faster multipoint linkage analysis using Fourier transforms. J Comput Biol 5: 1–7. 9541867
33. Cheung CY, Thompson EA, Wijsman EM (2013) GIGI: an approach to effective imputation of dense genotypes on large pedigrees. Am J Hum Genet 92: 504–516. doi: 10.1016/j.ajhg.2013.02.011 23561844
34. Tong L, Thompson E (2008) Multilocus lod scores in large pedigrees: combination of exact and approximate calculations. Hum Hered 65: 142–153. 17934317
35. Wijsman EM, Rothstein JH, Thompson EA (2006) Multipoint linkage analysis with many multiallelic or dense diallelic markers: Markov chain-Monte Carlo provides practical approaches for genome scans on general pedigrees. Am J Hum Genet 79: 846–858. 17033961
36. Ramu A, Noordam MJ, Schwartz RS, Wuster A, Hurles ME, et al. (2013) DeNovoGear: de novo indel and point mutation discovery and phasing. Nat Methods 10: 985–987. doi: 10.1038/nmeth.2611 23975140
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 6
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Non-reciprocal Interspecies Hybridization Barriers in the Capsella Genus Are Established in the Endosperm
- Translational Upregulation of an Individual p21 Transcript Variant by GCN2 Regulates Cell Proliferation and Survival under Nutrient Stress
- Exome Sequencing of Phenotypic Extremes Identifies and as Interacting Modifiers of Chronic Infection in Cystic Fibrosis
- The Human Blood Metabolome-Transcriptome Interface