The Role of -Mediated Epigenetic Silencing in the Population Dynamics of Transposable Elements in
The piwi-interacting RNAs (piRNAs) are small RNAs that can suppress the expression of selfish transposable elements (TEs) in many animal genomes. One mechanism by which piRNAs silence TEs is through the formation of heterochromatin, which is condensed chromatin and generally associated with repressed gene expression. Several functional studies have demonstrated that piRNA-mediated heterochromatin of TEs can spread to adjacent genes. We hypothesized that this spread of TE-induced heterochromatin influences the function of adjacent genes, ultimately resulting in selection against individual TEs. Consistent with our hypothesis, we found that sequences and genes adjacent to TEs are enriched in heterochromatic marks. We determine that this TE-induced variation in epigenetic status is probably piRNA-dependent and that this change in chromatin state influences the expression levels of adjacent genes. Importantly, TEs that lead to higher heterochromatin enrichment of adjacent genes are more strongly selected against, demonstrating the evolutionary consequences of TE-induced epigenetic silencing. In contrast to previously studied deleterious impacts of TEs, which depend on TEs’ physical disruptions of DNAs, our proposed functional effect of TEs is mediated through their epigenetic influence. Our study suggests that the piRNA-dependent epigenetic impact of TEs may play an important role in the evolutionary dynamics of TEs.
Vyšlo v časopise:
The Role of -Mediated Epigenetic Silencing in the Population Dynamics of Transposable Elements in. PLoS Genet 11(6): e32767. doi:10.1371/journal.pgen.1005269
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1005269
Souhrn
The piwi-interacting RNAs (piRNAs) are small RNAs that can suppress the expression of selfish transposable elements (TEs) in many animal genomes. One mechanism by which piRNAs silence TEs is through the formation of heterochromatin, which is condensed chromatin and generally associated with repressed gene expression. Several functional studies have demonstrated that piRNA-mediated heterochromatin of TEs can spread to adjacent genes. We hypothesized that this spread of TE-induced heterochromatin influences the function of adjacent genes, ultimately resulting in selection against individual TEs. Consistent with our hypothesis, we found that sequences and genes adjacent to TEs are enriched in heterochromatic marks. We determine that this TE-induced variation in epigenetic status is probably piRNA-dependent and that this change in chromatin state influences the expression levels of adjacent genes. Importantly, TEs that lead to higher heterochromatin enrichment of adjacent genes are more strongly selected against, demonstrating the evolutionary consequences of TE-induced epigenetic silencing. In contrast to previously studied deleterious impacts of TEs, which depend on TEs’ physical disruptions of DNAs, our proposed functional effect of TEs is mediated through their epigenetic influence. Our study suggests that the piRNA-dependent epigenetic impact of TEs may play an important role in the evolutionary dynamics of TEs.
Zdroje
1. Daborn PJ, Yen JL, Bogwitz MR, Le Goff G, Feil E, Jeffers S, et al. A Single P450 Allele Associated with Insecticide Resistance in Drosophila. Science. 2002;297: 2253 –2256. doi: 10.1126/science.1074170 12351787
2. Schlenke TA, Begun DJ. Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proc Natl Acad Sci U S A. 2004;101: 1626–1631. doi: 10.1073/pnas.0303793101 14745026
3. Aminetzach YT, Macpherson JM, Petrov DA. Pesticide Resistance via Transposition-Mediated Adaptive Gene Truncation in Drosophila. Science. 2005;309: 764 –767. doi: 10.1126/science.1112699 16051794
4. González J, Lenkov K, Lipatov M, Macpherson JM, Petrov DA. High rate of recent transposable element-induced adaptation in Drosophila melanogaster. PLoS Biol. 2008;6: e251. doi: 10.1371/journal.pbio.0060251 18942889
5. Schmidt JM, Good RT, Appleton B, Sherrard J, Raymant GC, Bogwitz MR, et al. Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus. PLoS Genet. 2010;6: e1000998. doi: 10.1371/journal.pgen.1000998 20585622
6. Maside X, Bartolomé C, Charlesworth B. S-element insertions are associated with the evolution of the Hsp70 genes in Drosophila melanogaster. Curr Biol CB. 2002;12: 1686–1691. 12361573
7. Finnegan DJ. Transposable elements. Curr Opin Genet Dev. 1992;2: 861–867. 1335807
8. Montgomery E, Charlesworth B, Langley CH. A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet Res. 1987;49: 31–41. 3032743
9. Montgomery EA, Huang SM, Langley CH, Judd BH. Chromosome rearrangement by ectopic recombination in Drosophila melanogaster: genome structure and evolution. Genetics. 1991;129: 1085–1098. 1783293
10. Langley CH, Montgomery E, Hudson R, Kaplan N, Charlesworth B. On the role of unequal exchange in the containment of transposable element copy number. Genet Res. 1988;52: 223–235. 2854088
11. Batzer MA, Deininger PL. Alu repeats and human genomic diversity. Nat Rev Genet. 2002;3: 370–379. doi: 10.1038/nrg798 11988762
12. Mieczkowski PA, Lemoine FJ, Petes TD. Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair. 2006;5: 1010–1020. doi: 10.1016/j.dnarep.2006.05.027 16798113
13. Charlesworth B, Charlesworth D. The Population Dynamics of Transposable Elements. Genet Res. 1983;42: 1–27. doi: 10.1017/S0016672300021455
14. Langley CH, Brookfield JF, Kaplan N. Transposable elements in mendelian populations. I. A theory. Genetics. 1983;104: 457–471. 17246142
15. Charlesworth B, Langley CH. The population genetics of Drosophila transposable elements. Annu Rev Genet. 1989;23: 251–287. doi: 10.1146/annurev.ge.23.120189.001343 2559652
16. Charlesworth B, Lapid A. A study of ten families of transposable elements on X chromosomes from a population of Drosophila melanogaster. Genet Res. 1989;54: 113–125. 2558961
17. Charlesworth B, Lapid A, Canada D. The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. II. Inferences on the nature of selection against elements. Genet Res. 1992;60: 115–130. 1334900
18. Kofler R, Betancourt AJ, Schlötterer C. Sequencing of Pooled DNA Samples (Pool-Seq) Uncovers Complex Dynamics of Transposable Element Insertions in Drosophila melanogaster. PLoS Genet. 2012;8: e1002487. doi: 10.1371/journal.pgen.1002487 22291611
19. Cridland JM, Macdonald SJ, Long AD, Thornton KR. Abundance and Distribution of Transposable Elements in Two Drosophila QTL Mapping Resources. Mol Biol Evol. 2013;30: 2311–2327. doi: 10.1093/molbev/mst129 23883524
20. Lee YCG, Langley CH. Transposable elements in natural populations of Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci. 2010;365: 1219–1228. doi: 10.1098/rstb.2009.0318 20308097
21. Blumenstiel JP, Chen X, He M, Bergman CM. An Age-of-Allele Test of Neutrality for Transposable Element Insertions. Genetics. 2014;196: 523–538. doi: 10.1534/genetics.113.158147 24336751
22. Hollister JD, Gaut BS. Epigenetic silencing of transposable elements: A trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res. 2009;19: 1419–1428. doi: 10.1101/gr.091678.109 19478138
23. Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, et al. A slicer-mediated mechanism for repeat-associated siRNA 5’ end formation in Drosophila. Science. 2007;315: 1587–1590. doi: 10.1126/science.1140494 17322028
24. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007;128: 1089–1103. doi: 10.1016/j.cell.2007.01.043 17346786
25. Klattenhoff C, Theurkauf W. Biogenesis and germline functions of piRNAs. Dev Camb Engl. 2008;135: 3–9. doi: 10.1242/dev.006486
26. Senti K- A, Brennecke J. The piRNA pathway: a fly’s perspective on the guardian of the genome. Trends Genet. 2010;26: 499–509. doi: 10.1016/j.tig.2010.08.007 20934772
27. Grewal SIS, Elgin SCR. Transcription and RNA interference in the formation of heterochromatin. Nature. 2007;447: 399–406. doi: 10.1038/nature05914 17522672
28. Klenov MS, Lavrov SA, Stolyarenko AD, Ryazansky SS, Aravin AA, Tuschl T, et al. Repeat-associated siRNAs cause chromatin silencing of retrotransposons in the Drosophila melanogaster germline. Nucleic Acids Res. 2007;35: 5430–5438. doi: 10.1093/nar/gkm576 17702759
29. Klenov MS, Sokolova OA, Yakushev EY, Stolyarenko AD, Mikhaleva EA, Lavrov SA, et al. Separation of stem cell maintenance and transposon silencing functions of Piwi protein. Proc Natl Acad Sci U S A. 2011;108: 18760–18765. doi: 10.1073/pnas.1106676108 22065765
30. Wang SH, Elgin SCR. Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line. Proc Natl Acad Sci U S A. 2011;108: 21164–21169. doi: 10.1073/pnas.1107892109 22160707
31. Thomas AL, Rogers AK, Webster A, Marinov GK, Liao SE, Perkins EM, et al. Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. Genes Dev. 2013;27: 390–399. doi: 10.1101/gad.209841.112 23392610
32. Sentmanat MF, Elgin SCR. Ectopic assembly of heterochromatin in Drosophila melanogaster triggered by transposable elements. Proc Natl Acad Sci. 2012;109: 14104–14109. doi: 10.1073/pnas.1207036109 22891327
33. Sentmanat M, Wang SH, Elgin SCR. Targeting heterochromatin formation to transposable elements in Drosophila: Potential roles of the piRNA system. Biochem Mosc. 2013;78: 562–571. doi: 10.1134/S0006297913060023 23980883
34. Muller HJ. Types of visible variations induced by X-rays inDrosophila. J Genet. 1930;22: 299–334. doi: 10.1007/BF02984195
35. Talbert PB, Henikoff S. Spreading of silent chromatin: inaction at a distance. Nat Rev Genet. 2006;7: 793–803. doi: 10.1038/nrg1920 16983375
36. Girton JR, Johansen KM. Chromatin structure and the regulation of gene expression: the lessons of PEV in Drosophila. Adv Genet. 2008;61: 1–43. doi: 10.1016/S0065-2660(07)00001-6 18282501
37. Elgin SCR, Reuter G. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb Perspect Biol. 2013;5: a017780. doi: 10.1101/cshperspect.a017780 23906716
38. Kouzarides T. Chromatin Modifications and Their Function. Cell. 2007;128: 693–705. doi: 10.1016/j.cell.2007.02.005 17320507
39. Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, Ernst J, et al. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature. 2011;471: 480–485. doi: 10.1038/nature09725 21179089
40. Nègre N, Brown CD, Ma L, Bristow CA, Miller SW, Wagner U, et al. A cis-regulatory map of the Drosophila genome. Nature. 2011;471: 527–531. doi: 10.1038/nature09990 21430782
41. Riddle NC, Minoda A, Kharchenko PV, Alekseyenko AA, Schwartz YB, Tolstorukov MY, et al. Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. Genome Res. 2011;21: 147–163. doi: 10.1101/gr.110098.110 21177972
42. Henry GL, Davis FP, Picard S, Eddy SR. Cell type–specific genomics of Drosophila neurons. Nucleic Acids Res. 2012;40: 9691–9704. doi: 10.1093/nar/gks671 22855560
43. Consortium TEP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489: 57–74. doi: 10.1038/nature11247 22955616
44. Arthur RK, Ma L, Slattery M, Spokony RF, Ostapenko A, Nègre N, et al. Evolution of H3K27me3-marked chromatin is linked to gene expression evolution and to patterns of gene duplication and diversification. Genome Res. 2014;24: 1115–1124. doi: 10.1101/gr.162008.113 24985914
45. Eanes WF, Wesley C, Charlesworth B. Accumulation of P elements in minority inversions in natural populations of Drosophila melanogaster. Genet Res. 1992;59: 1–9. 1315298
46. Sniegowski PD, Charlesworth B. Transposable element numbers in cosmopolitan inversions from a natural population of Drosophila melanogaster. Genetics. 1994;137: 815–827. 8088526
47. Bartolomé C, Maside X, Charlesworth B. On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Mol Biol Evol. 2002;19: 926–937. 12032249
48. Petrov DA, Fiston-Lavier A-S, Lipatov M, Lenkov K, González J. Population genomics of transposable elements in Drosophila melanogaster. Mol Biol Evol. 2011;28: 1633–1644. doi: 10.1093/molbev/msq337 21172826
49. Shpiz S, Ryazansky S, Olovnikov I, Abramov Y, Kalmykova A. Euchromatic Transposon Insertions Trigger Production of Novel Pi- and Endo-siRNAs at the Target Sites in the Drosophila Germline. PLoS Genet. 2014;10: e1004138. doi: 10.1371/journal.pgen.1004138 24516406
50. Blumenstiel JP, Hartl DL. Evidence for maternally transmitted small interfering RNA in the repression of transposition in Drosophila virilis. Proc Natl Acad Sci U S A. 2005;102: 15965–15970. doi: 10.1073/pnas.0508192102 16247000
51. Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ. An epigenetic role for maternally inherited piRNAs in transposon silencing. Science. 2008;322: 1387–1392. doi: 10.1126/science.1165171 19039138
52. Saito K, Inagaki S, Mituyama T, Kawamura Y, Ono Y, Sakota E, et al. A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature. 2009;461: 1296–1299. doi: 10.1038/nature08501 19812547
53. Robine N, Lau NC, Balla S, Jin Z, Okamura K, Kuramochi-Miyagawa S, et al. A broadly conserved pathway generates 3’UTR-directed primary piRNAs. Curr Biol CB. 2009;19: 2066–2076. doi: 10.1016/j.cub.2009.11.064 20022248
54. Ayroles JF, Carbone MA, Stone EA, Jordan KW, Lyman RF, Magwire MM, et al. Systems genetics of complex traits in Drosophila melanogaster. Nat Genet. 2009;41: 299–307. doi: 10.1038/ng.332 19234471
55. Cridland JM, Thornton KR, Long AD. Gene Expression Variation in Drosophila melanogaster Due to Rare Transposable Element Insertion Alleles of Large Effect. Genetics. 2015;199: 85–93. doi: 10.1534/genetics.114.170837 25335504
56. Linheiro RS, Bergman CM. Whole Genome Resequencing Reveals Natural Target Site Preferences of Transposable Elements in Drosophila melanogaster. PLoS ONE. 2012;7: e30008. doi: 10.1371/journal.pone.0030008 22347367
57. Liao G, Rehm EJ, Rubin GM. Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2000;97: 3347–3351. 10716700
58. Spradling AC, Bellen HJ, Hoskins RA. Drosophila P elements preferentially transpose to replication origins. Proc Natl Acad Sci. 2011; doi: 10.1073/pnas.1112960108
59. Kelleher ES, Barbash DA. Analysis of piRNA-Mediated Silencing of Active TEs in Drosophila melanogaster Suggests Limits on the Evolution of Host Genome Defense. Mol Biol Evol. 2013;30: 1816–1829. doi: 10.1093/molbev/mst081 23625890
60. Petrov DA, Aminetzach YT, Davis JC, Bensasson D, Hirsh AE. Size Matters: Non-LTR Retrotransposable Elements and Ectopic Recombination in Drosophila. Mol Biol Evol. 2003;20: 880–892. doi: 10.1093/molbev/msg102 12716993
61. Bartolomé C, Maside X. The lack of recombination drives the fixation of transposable elements on the fourth chromosome of Drosophila melanogaster. Genet Res. 2004;83: 91–100. 15219154
62. Hill WG, Robertson A. The effect of linkage on limits to artificial selection. Genet Res. 1966;8: 269–294. 5980116
63. Gu T, Elgin SCR. Maternal Depletion of Piwi, a Component of the RNAi System, Impacts Heterochromatin Formation in Drosophila. PLoS Genet. 2013;9: e1003780. doi: 10.1371/journal.pgen.1003780 24068954
64. Kaminker JS, Bergman CM, Kronmiller B, Carlson J, Svirskas R, Patel S, et al. The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol. 2002;3: RESEARCH0084.
65. Quesneville H, Bergman CM, Andrieu O, Autard D, Nouaud D, Ashburner M, et al. Combined Evidence Annotation of Transposable Elements in Genome Sequences. PLoS Comput Biol. 2005;1. doi: 10.1371/journal.pcbi.0010022
66. Schaefer M, Lyko F. Lack of evidence for DNA methylation of Invader4 retroelements in Drosophila and implications for Dnmt2-mediated epigenetic regulation. Nat Genet. 2010;42: 920–921. doi: 10.1038/ng1110-920 20980983
67. Takayama S, Dhahbi J, Roberts A, Mao G, Heo S-J, Pachter L, et al. Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity. Genome Res. 2014;24: 821–830. doi: 10.1101/gr.162412.113 24558263
68. Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature. 2008;455: 1193–1197. doi: 10.1038/nature07415 18830242
69. Begun DJ, Holloway AK, Stevens K, Hillier LW, Poh Y-P, Hahn MW, et al. Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLoS Biol. 2007;5: e310. doi: 10.1371/journal.pbio.0050310 17988176
70. Kharchenko PV, Tolstorukov MY, Park PJ. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol. 2008;26: 1351–1359. doi: 10.1038/nbt.1508 19029915
71. Comeron JM, Ratnappan R, Bailin S. The Many Landscapes of Recombination in Drosophila melanogaster. PLoS Genet. 2012;8: e1002905. doi: 10.1371/journal.pgen.1002905 23071443
72. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25: 1754–1760. doi: 10.1093/bioinformatics/btp324 19451168
73. Olovnikov I, Ryazansky S, Shpiz S, Lavrov S, Abramov Y, Vaury C, et al. De novo piRNA cluster formation in the Drosophila germ line triggered by transgenes containing a transcribed transposon fragment. Nucleic Acids Res. 2013;41: 5757–5768. doi: 10.1093/nar/gkt310 23620285
74. Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, et al. The developmental transcriptome of Drosophila melanogaster. Nature. 2011;471: 473–479. doi: 10.1038/nature09715 21179090
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 6
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Non-reciprocal Interspecies Hybridization Barriers in the Capsella Genus Are Established in the Endosperm
- Translational Upregulation of an Individual p21 Transcript Variant by GCN2 Regulates Cell Proliferation and Survival under Nutrient Stress
- Exome Sequencing of Phenotypic Extremes Identifies and as Interacting Modifiers of Chronic Infection in Cystic Fibrosis
- The Human Blood Metabolome-Transcriptome Interface