#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A New Model to Produce Infectious Hepatitis C Virus without the Replication Requirement


Numerous constraints significantly hamper the experimental study of hepatitis C virus (HCV). Robust replication in cell culture occurs with only a few strains, and is invariably accompanied by adaptive mutations that impair in vivo infectivity/replication. This problem complicates the production and study of authentic HCV, including the most prevalent and clinically important genotype 1 (subtypes 1a and 1b). Here we describe a novel cell culture approach to generate infectious HCV virions without the HCV replication requirement and the associated cell-adaptive mutations. The system is based on our finding that the intracellular environment generated by a West-Nile virus (WNV) subgenomic replicon rendered a mammalian cell line permissive for assembly and release of infectious HCV particles, wherein the HCV RNA with correct 5′ and 3′ termini was produced in the cytoplasm by a plasmid-driven dual bacteriophage RNA polymerase-based transcription/amplification system. The released particles preferentially contained the HCV-based RNA compared to the WNV subgenomic RNA. Several variations of this system are described with different HCV-based RNAs: (i) HCV bicistronic particles (HCVbp) containing RNA encoding the HCV structural genes upstream of a cell-adapted subgenomic replicon, (ii) HCV reporter particles (HCVrp) containing RNA encoding the bacteriophage SP6 RNA polymerase in place of HCV nonstructural genes, and (iii) HCV wild-type particles (HCVwt) containing unmodified RNA genomes of diverse genotypes (1a, strain H77; 1b, strain Con1; 2a, strain JFH-1). Infectivity was assessed based on the signals generated by the HCV RNA molecules introduced into the cytoplasm of target cells upon virus entry, i.e. HCV RNA replication and protein production for HCVbp in Huh-7.5 cells as well as for HCVwt in HepG2-CD81 cells and human liver slices, and SP6 RNA polymerase-driven firefly luciferase for HCVrp in target cells displaying candidate HCV surface receptors. HCV infectivity was inhibited by pre-incubation of the particles with anti-HCV antibodies and by a treatment of the target cells with leukocyte interferon plus ribavirin. The production of authentic infectious HCV particles of virtually any genotype without the adaptive mutations associated with in vitro HCV replication represents a new paradigm to decipher the requirements for HCV assembly, release, and entry, amenable to analyses of wild type and genetically modified viruses of the most clinically significant HCV genotypes.


Vyšlo v časopise: A New Model to Produce Infectious Hepatitis C Virus without the Replication Requirement. PLoS Pathog 7(4): e32767. doi:10.1371/journal.ppat.1001333
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001333

Souhrn

Numerous constraints significantly hamper the experimental study of hepatitis C virus (HCV). Robust replication in cell culture occurs with only a few strains, and is invariably accompanied by adaptive mutations that impair in vivo infectivity/replication. This problem complicates the production and study of authentic HCV, including the most prevalent and clinically important genotype 1 (subtypes 1a and 1b). Here we describe a novel cell culture approach to generate infectious HCV virions without the HCV replication requirement and the associated cell-adaptive mutations. The system is based on our finding that the intracellular environment generated by a West-Nile virus (WNV) subgenomic replicon rendered a mammalian cell line permissive for assembly and release of infectious HCV particles, wherein the HCV RNA with correct 5′ and 3′ termini was produced in the cytoplasm by a plasmid-driven dual bacteriophage RNA polymerase-based transcription/amplification system. The released particles preferentially contained the HCV-based RNA compared to the WNV subgenomic RNA. Several variations of this system are described with different HCV-based RNAs: (i) HCV bicistronic particles (HCVbp) containing RNA encoding the HCV structural genes upstream of a cell-adapted subgenomic replicon, (ii) HCV reporter particles (HCVrp) containing RNA encoding the bacteriophage SP6 RNA polymerase in place of HCV nonstructural genes, and (iii) HCV wild-type particles (HCVwt) containing unmodified RNA genomes of diverse genotypes (1a, strain H77; 1b, strain Con1; 2a, strain JFH-1). Infectivity was assessed based on the signals generated by the HCV RNA molecules introduced into the cytoplasm of target cells upon virus entry, i.e. HCV RNA replication and protein production for HCVbp in Huh-7.5 cells as well as for HCVwt in HepG2-CD81 cells and human liver slices, and SP6 RNA polymerase-driven firefly luciferase for HCVrp in target cells displaying candidate HCV surface receptors. HCV infectivity was inhibited by pre-incubation of the particles with anti-HCV antibodies and by a treatment of the target cells with leukocyte interferon plus ribavirin. The production of authentic infectious HCV particles of virtually any genotype without the adaptive mutations associated with in vitro HCV replication represents a new paradigm to decipher the requirements for HCV assembly, release, and entry, amenable to analyses of wild type and genetically modified viruses of the most clinically significant HCV genotypes.


Zdroje

1. ShepardCW

FinelliL

AlterMJ

2005 Global epidemiology of hepatitis C virus infection. Lancet Infect Dis 5 558 567

2. KuikenC

YusimK

BoykinL

RichardsonR

2005 The Los Alamos HCV Sequence Database. Bioinformatics 21 379 84 Available: http://hcv.lanl.gov

3. AlterHJ

PurcellRH

HollandPV

PopperH

1978 Transmissible agent in non-A, non-B hepatitis. Lancet 1 459 463

4. BukhJ

2004 A critical role for the chimpanzee model in the study of hepatitis C. Hepatology 39 1469 1475

5. ChooQL

KuoG

WeinerAJ

OverbyLR

BradleyDW

1989 Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244 359 362

6. SeippS

MuellerHM

PfaffE

StremmelW

TheilmannL

1997 Establishment of persistent hepatitis C virus infection and replication in vitro. J Gen Virol 78 2467 2476

7. LohmannV

KörnerF

KochJ

HerianU

TheilmannL

1999 Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285 110 113

8. BlightKJ

KolykhalovAA

RiceCM

2000 Efficient initiation of HCV RNA replication in cell culture. Science 290 1972 1974

9. BlightKJ

McKeatingJA

MarcotrigianoJ

RiceCM

2003 Efficient replication of hepatitis C virus genotype 1a RNAs in cell culture. J Virol 77 3181 3190

10. BlightKJ

McKeatingJA

RiceCM

2002 Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 76 13001 13014

11. WakitaT

PietschmannT

KatoT

DateT

MiyamotoM

2005 Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11 791 796

12. ZhongJ

GastaminzaP

ChengG

KapadiaS

KatoT

2005 Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci USA 102 9294 9296

13. LindenbachBD

EvansMJ

SyderAJ

WölkB

TellinghuisenTL

2005 Complete replication of hepatitis C virus in cell culture. Science 309 623 626

14. RongL

DahariH

RibeiroRM

PerelsonAS

2010 Rapid emergence of protease inhibitor resistance in hepatitis C virus. Sci Transl Med 2 30 32

15. SumpterR

LooYM

FoyE

LiK

YoneyamaM

2005 Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol 79 2689 2699

16. YiM

MaY

YatesJ

LemonSM

2007 Compensatory mutations in E1, p7, NS2, and NS3 enhance yield of cell culture-infectious intergenotypic chimeric hepatitis C virus. J Virol 81 629 638

17. GottweinJM

ScheelTK

JensenTB

LademannJB

PrentoeJC

2009 Development and characterization of hepatitis C virus genotype 1–7 cell culture systems: role of CD81 and scavenger receptor class B type 1 and effect of antiviral drugs. Hepatology 49 364 377

18. PietschmannT

KaulA

KoutsoudakisG

ShavinskayaA

KallisS

2006 Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc Natl Acad Sci USA 103 7408 7413

19. PietschmannT

ZayasM

MeulemanP

LongG

AppelN

2009 Production of infectious genotype 1b virus particles in cell culture and impairment by replication enhancing mutations. PLoS Pathog 5 e1000475

20. BukhJ

PietschmannT

LohmannV

KriegerN

FaulkK

2002 Mutations that permit efficient replication of hepatitis C virus RNA in Huh-7 cells prevent productive replication in chimpanzees. Proc Natl Acad Sci USA 99 14416 14421

21. KaulA

WoerzI

MeulemanP

Leroux-RoelsG

BartenschlagerR

2007 Cell culture adaptation of hepatitis C virus and in vivo viability of an adapted variant. J Virol 81 13168 13179

22. GottweinJM

ScheelTK

CallendretB

LiYP

EcclestonHB

2010 Novel infectious cDNA clones of hepatitis C virus genotype 3a (strain S52) and 4a (strain ED43): genetic analyses and in vivo pathogenesis studies. J Virol 84 5277 5293

23. YiM

VillanuevaRA

ThomasDL

WakitaT

LemonSM

2006 Production of infectious genotype 1a hepatitis C virus (Hutchinson strain) in cultured human hepatoma cells. Proc Natl Acad Sci USA 103 2310 2315

24. EggerD

WölkB

GosertR

BianchiL

BlumHE

2002 Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol 76 5974 5984

25. MackenzieJ

2005 Wrapping things up about virus RNA replication. Traffic 6 967 977

26. KhromykhAA

VarnavskiAN

SedlakPL

WestawayEG

2001 Coupling between replication and packaging of flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus. J Virol 75 4633 4640

27. WestawayEG

MackenzieJM

KenneyMT

JonesMK

KhromykhAA

1997 Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. J Virol 71 6650 6661

28. WelschS

MillerS

Romero-BreyI

MerzA

BleckCK

2009 Composition and three-dimensional architecture of the Dengue virus replication and assembly site. Cell Host Microbe 5 365 375

29. KhromykhAA

VarnavskiAN

WestawayEG

1998 Encapsidation of the Flavivirus Kunjin replicon RNA by using a complementation system providing Kunjin virus structural proteins in trans. J Virol 72 5967 5977

30. MasonPW

ShustovAV

FrolovI

2006 Production and characterization of vaccines based on flaviviruses defective in replication. Virology 351 432 443

31. MurrayCL

JonesCT

RiceCM

2008 Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol 6 699 708

32. PiersonTC

SánchezMD

PufferBA

AhmedAA

GeissBJ

2006 A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection. Virology 346 53 65

33. GastaminzaP

KapadiaSB

ChisariFV

2006 Differential biophysical properties of infectious intracellular and secreted hepatitis C virus particles. J Virol 80 11074 11081

34. BucciC

SerùR

AnnellaT

VitelliR

LatteroD

1998 Free fatty acids modulate LDL receptor activity in BHK-21 cells. Atherosclerosis 137 329 340

35. TriyatniM

SaunierB

MaruvadaP

DavisAR

UlianichL

2002 Interaction of hepatitis C virus-like particles and cells: a model system for studying viral binding and entry. J Virol 76 9335 9344

36. MeunierJC

RussellRS

EngleRE

FaulkKN

PurcellRH

2008 Apoliporotein c1 association with hepatitis C virus. J Virol 82 9647 9656

37. WestawayEG

KhromykhAA

MackenzieJM

1999 Nascent flavivirus RNA colocalized in situ with double-stranded RNA in stable replication complexes. Virology 258 108 117

38. DahariH

ShudoE

CotlerSJ

LaydenTJ

PerelsonAS

2009 Modelling hepatitis C virus kinetics: the relationship between the infected cell loss rate and the final slope of viral decay. Antivir Ther 14 459 464

39. PileriP

UematsuY

CampagnoliS

GalliG

FalugiF

1998 Binding of hepatitis C virus to CD81. Science 282 938 941

40. BartoschB

DubuissonJ

CossetFL

2003 Infectious hepatitis C virus pseudo-particles containing functional E1–E2 envelope protein complexes. J Exp Med 197 633 642

41. FlintM

von HahnT

ZhangJ

FarquharM

JonesCT

2006 Diverse CD81 proteins support hepatitis C virus infection. J Virol 80 11331 11342

42. ScarselliE

AnsuiniH

CerinoR

RoccaseccaRM

AcaliS

2002 The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 21 5017 5025

43. SaunierB

TriyatniM

UlianichL

MaruvadaP

YenP

2003 Role of the asialoglycoprotein receptor in binding and entry of hepatitis C virus structural proteins in cultured human hepatocytes. J Virol 77 546 559

44. EvansMJ

von HahnT

TscherneDM

SyderAJ

PanisAM

2007 Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446 801 805

45. FarciP

ShimodaA

WongD

CabezonT

De GioannisD

1996 Prevention of hepatitis C virus infection in chimpanzees by hyperimmune serum against the hypervariable region 1 of the envelope 2 protein. Proc Natl Acad Sci USA 93 15394 15399

46. KolykhalovAA

AgapovEV

BlightKJ

MihalikK

FeinstoneSM

1997 Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 277 570 574

47. MolinaS

CastetV

Pichard-GarciaL

WychowskiC

MeursE

2008 Serum-derived hepatitis C virus infection of primary human hepatocytes is tetraspanin CD81 dependent. J Virol 82 569 574

48. LiangY

ShilagardT

XiaoSY

SnyderN

LauD

2009 Visualizing hepatitis C virus infections in human liver by two-photon microscopy. Gastroenterology 137 1448 14458

49. ShiPY

TilgnerM

LoMK

2002 Construction and characterization of subgenomic replicons of New York strains of West Nile virus. Virology 296 219 233

50. KapoorM

ZhangL

MohanPM

PadmanabhanR

1995 Synthesis and characterization of an infectious dengue virus type-2 RNA genome (New Guinea C strain). Gene 162 175 180

51. BerglundP

SjöbergM

GaroffH

AtkinsGJ

SheahanBJ

1993 Semliki Forest virus expression system: production of conditionally infectious recombinant particles. Nat Biotechnol 11 916 920

52. FredericksenBL

SmithM

KatzeMG

ShiP-Y

GaleM

2004 The host response to west Nile Virus infection limits viral spread through the activation of the interferon regulatory factor 3 pathway. J Virol 78 7737 7747

53. YeJ

2007 Reliance of host cholesterol metabolic pathways for the life cycle of hepatitis C virus. PLoS Pathog 3 e108

54. MiyanariY

AtsuzawaK

UsudaN

WatashiK

HishikiT

2007 The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9 1089 1097

55. MackenzieJM

KhromykhAA

PartonRG

2007 Cholesterol manipulation by West Nile virus perturbs the cellular immune response. Cell Host Microbe 2 229 239

56. SamsaMM

MondotteJA

IglesiasNG

Assunção-MirandaI

Barbosa-LimaG

2009 Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog 5 e1000632

57. WangP

ArjonaA

ZhangY

SultanaH

DaiJ

2010 Caspase-12 controls West Nile virus infection via the viral RNA receptor RIG-I. Nat Immunol 11 912 919

58. DaffisS

SamuelMA

SutharMS

KellerBC

GaleMJr

2008 Interferon regulatory factor IRF-7 induces the antiviral alpha interferon response and protects against lethal West Nile virus infection. J Virol 82 8465 8475

59. DaffisS

SamuelMA

KellerBC

Gale MJr

DiamondMS

2007 Cell-specific IRF-3 responses protect against West Nile virus infection by interferon-dependent and -independent mechanisms. PLoS Pathog 3 e106

60. SilbersteinE

MihalikK

UlitzkyL

PlantEP

PuigM

2010 Persistent growth of a human plasma-derived hepatitis C virus genotype 1b isolate in cell culture. PLoS Pathog 6 e1000910

61. Muñoz-JordánJL

Laurent-RolleM

AshourJ

Martínez-SobridoL

AshokM

2005 Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol 79 8004 8013

62. JohnsonCL

OwenDM

GaleMJr

2007 Functional and therapeutic analysis of hepatitis C virus NS3-4A protease control of antiviral immune defense. J Biol Chem 282 10792 10803

63. FlintM

LogvinoffC

RiceCM

McKeatingJM

2004 Characterization of infectious retroviral pseudotype particles bearing hepatitis C virus glycoproteins. J Virol 78 6875 6882

64. BeyeneA

BasuA

MeyerK

RayR

2004 Influence of N-linked glycans on intracellular transport of hepatitis C virus E1 chimeric glycoprotein and its role in pseudotype virus infectivity. Virology 324 273 285

65. ParkJH

KimKL

ChoEW

2006 Detection of surface asialoglycoprotein receptor expression in hepatic and extra-hepatic cells using a novel monoclonal antibody. Biotechnol Lett 28 1061 1069

66. ValladeauJ

Duvert-FrancesV

PinJJ

KleijmeerMJ

Ait-YahiaS

2001 Immature human dendritic cells express asialoglycoprotein receptor isoforms for efficient receptor-mediated endocytosis. J Immunol 167 5767 5774

67. MeertensL

BertauxC

DragicT

2006 Hepatitis C virus entry requires a critical postinternalization step and delivery to early endosomes via clathrin-coated vesicles. J Virol 80 11571 11578

68. CodranA

RoyerC

JaeckD

Bastien-ValleM

BaumertTF

2006 Entry of hepatitis C virus pseudotypes into primary human hepatocytes by clathrin-dependent endocytosis. J Gen Virol 87 2583 2593

69. BlanchardE

BelouzardS

GoueslainL

WakitaT

DubuissonJ

2006 Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol 80 6964 6972

70. KatzirZ

NardiN

GeffenI

FuhrerC

HenisYI

1994 Dynamic interactions of the asialoglycoprotein receptor subunits with coated pits: Enhanced interactions of H2 following association with H1. J Biol Chem 269 21568 21575

71. WadkinsTS

BeenMD

2002 Ribozyme activity in the genomic and antigenomic RNA strands of hepatitis delta virus. Cell Mol Life Sci 59 112 125

72. GriffinBA

AdamsSR

TsienRY

1998 Specific covalent labeling of recombinant protein molecules inside live cells. Science 281 269 272

73. FriebeP

BoudetJ

SimorreJP

BartenschlagerR

2005 Kissing-loop interaction in the 3′ end of the hepatitis C virus genome essential for RNA replication. J Virol 79 380 392

74. OwsiankaA

ClaytonRF

Loomis-PriceLD

McKeatingJA

PatelAH

2001 Functional analysis of hepatitis C virus E2 glycoproteins and virus-like particles reveals structural dissimilarities between different forms of E2. J Gen Virol 82 1877 1883

75. DussuptV

JavidMP

Abou-JaoudéG

JadwinJA

de La CruzJ

2009 The nucleocapsid region of HIV-1 Gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding. PLoS Pathog 5 e10000339

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#