is an Unstable Pathogen
Showing Evidence of Significant Genomic Flux
Citrobacter rodentium is a natural mouse pathogen that causes
attaching and effacing (A/E) lesions. It shares a common virulence strategy with
the clinically significant human A/E pathogens enteropathogenic E.
coli (EPEC) and enterohaemorrhagic E. coli (EHEC)
and is widely used to model this route of pathogenesis. We previously reported
the complete genome sequence of C. rodentium ICC168, where we
found that the genome displayed many characteristics of a newly evolved
pathogen. In this study, through PFGE, sequencing of isolates showing variation,
whole genome transcriptome analysis and examination of the mobile genetic
elements, we found that, consistent with our previous hypothesis, the genome of
C. rodentium is unstable as a result of repeat-mediated,
large-scale genome recombination and because of active transposition of mobile
genetic elements such as the prophages. We sequenced an additional C.
rodentium strain, EX-33, to reveal that the reference strain ICC168
is representative of the species and that most of the inactivating mutations
were common to both isolates and likely to have occurred early on in the
evolution of this pathogen. We draw parallels with the evolution of other
bacterial pathogens and conclude that C. rodentium is a
recently evolved pathogen that may have emerged alongside the development of
inbred mice as a model for human disease.
Vyšlo v časopise:
is an Unstable Pathogen
Showing Evidence of Significant Genomic Flux. PLoS Pathog 7(4): e32767. doi:10.1371/journal.ppat.1002018
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1002018
Souhrn
Citrobacter rodentium is a natural mouse pathogen that causes
attaching and effacing (A/E) lesions. It shares a common virulence strategy with
the clinically significant human A/E pathogens enteropathogenic E.
coli (EPEC) and enterohaemorrhagic E. coli (EHEC)
and is widely used to model this route of pathogenesis. We previously reported
the complete genome sequence of C. rodentium ICC168, where we
found that the genome displayed many characteristics of a newly evolved
pathogen. In this study, through PFGE, sequencing of isolates showing variation,
whole genome transcriptome analysis and examination of the mobile genetic
elements, we found that, consistent with our previous hypothesis, the genome of
C. rodentium is unstable as a result of repeat-mediated,
large-scale genome recombination and because of active transposition of mobile
genetic elements such as the prophages. We sequenced an additional C.
rodentium strain, EX-33, to reveal that the reference strain ICC168
is representative of the species and that most of the inactivating mutations
were common to both isolates and likely to have occurred early on in the
evolution of this pathogen. We draw parallels with the evolution of other
bacterial pathogens and conclude that C. rodentium is a
recently evolved pathogen that may have emerged alongside the development of
inbred mice as a model for human disease.
Zdroje
1. ParkhillJDouganGJamesKDThomsonNRPickardD
2001
Complete genome sequence of a multiple drug resistant
Salmonella enterica serovar Typhi CT18.
Nature
413
848
852
2. ParkhillJWrenBWThomsonNRTitballRWHoldenMT
2001
Genome sequence of Yersinia pestis, the
causative agent of plague.
Nature
413
523
527
3. BartholdSWColemanGLJacobyROLivestoneEMJonasAM
1978
Transmissible murine colonic hyperplasia.
Vet Pathol
15
223
236
4. SchauerDBFalkowS
1993
Attaching and effacing locus of a Citrobacter
freundii biotype that causes transmissible murine colonic
hyperplasia.
Infect Immun
61
2486
2492
5. SchauerDBZabelBAPedrazaIFO'HaraCMSteigerwaltAG
1995
Genetic and biochemical characterization of Citrobacter
rodentium sp. nov.
J Clin Microbiol
33
2064
2068
6. WalesADWoodwardMJPearsonGR
2005
Attaching-effacing bacteria in animals.
J Comp Pathol
132
1
26
7. DengWLiYVallanceBAFinlayBB
2001
Locus of enterocyte effacement from Citrobacter
rodentium: sequence analysis and evidence for horizontal
transfer among attaching and effacing pathogens.
Infect Immun
69
6323
6335
8. LuperchioSASchauerDB
2001
Molecular pathogenesis of Citrobacter rodentium
and transmissible murine colonic hyperplasia.
Microbes Infect
3
333
340
9. MundyRMacdonaldTTDouganGFrankelGWilesS
2005
Citrobacter rodentium of mice and
man.
Cell Microbiol
7
1697
1706
10. ItohKMaejimaKUedaKFujiwaraK
1978
Effect of intestinal flora on megaenteron of
mice.
Microbiol Immunol
22
661
672
11. ItohKMatsuiTTsujiKMitsuokaTUedaK
1988
Genetic control in the susceptibility of germfree inbred mice to
infection by Escherichia coli O115a,c:K(B).
Infect Immun
56
930
935
12. MutoTNakagawaMIsobeYSaitoMNakanoT
1969
Infectious megaenteron of mice. I. Manifestation and pathological
observation.
Jpn J Med Sci Biol
22
363
374
13. BartholdSWColemanGLBhattPNOsbaldistonGWJonasAM
1976
The etiology of transmissible murine colonic
hyperplasia.
Lab Anim Sci
26
889
894
14. BrennanPCFritzTEFlynnRJPooleCM
1965
Citrobacter freundii associated with diarrhea in
laboratory mice.
Lab Anim Care
15
266
275
15. EdigerRDKovatchRMRabsteinMM
1974
Colitis in mice with a high incidence of rectal
prolapse.
Lab Anim Sci
24
488
494
16. BrennerDJGrimontPASteigerwaltAGFanningGRAgeronE
1993
Classification of citrobacteria by DNA hybridization: designation
of Citrobacter farmeri sp. nov., Citrobacter
youngae sp. nov., Citrobacter braakii sp.
nov., Citrobacter werkmanii sp. nov., Citrobacter
sedlakii sp. nov., and three unnamed
Citrobacter genomospecies.
Int J Syst Bacteriol
43
645
658
17. LuperchioSANewmanJVDanglerCASchrenzelMDBrennerDJ
2000
Citrobacter rodentium, the causative agent of
transmissible murine colonic hyperplasia, exhibits clonality: synonymy of
C. rodentium and mouse-pathogenic Escherichia
coli.
J Clin Microbiol
38
4343
4350
18. OkutaniATobeTSasakawaCNozuRGotohK
2001
Comparison of bacteriological, genetic and pathological
characters between Escherichia coli O115a,c:K(B) and
Citrobacter rodentium.
Exp Anim
50
183
186
19. BartholdSWOsbaldistonGWJonasAM
1977
Dietary, bacterial, and host genetic interactions in the
pathogenesis of transmissible murine colonic hyperplasia.
Lab Anim Sci
27
938
945
20. PettyNKBulginRCrepinVFCerdeno-TarragaAMSchroederGN
2010
The Citrobacter rodentium genome sequence
reveals convergent evolution with human pathogenic Escherichia
coli.
J Bacteriol
192
525
538
21. LobryJR
1996
Asymmetric substitution patterns in the two DNA strands of
bacteria.
Mol Biol Evol
13
660
665
22. BlattnerFRPlunkettG3rdBlochCAPernaNTBurlandV
1997
The complete genome sequence of Escherichia coli
K-12.
Science
277
1453
1474
23. McClellandMSandersonKESpiethJCliftonSWLatreilleP
2001
Complete genome sequence of Salmonella enterica
serovar Typhimurium LT2.
Nature
413
852
856
24. SandersonKELiuSL
1998
Chromosomal rearrangements in enteric bacteria.
Electrophoresis
19
569
572
25. OokaTOguraYAsadulghaniMOhnishiMNakayamaK
2009
Inference of the impact of insertion sequence (IS) elements on
bacterial genome diversification through analysis of small-size structural
polymorphisms in Escherichia coli O157
genomes.
Genome Res
19
1809
1816
26. GirardeauJPBertinYMartinC
2009
Genomic analysis of the PAI ICL3 locus in pathogenic LEE-negative
Shiga toxin-producing Escherichia coli and
Citrobacter rodentium.
Microbiology
155
1016
1027
27. JacksonAPThomasGHParkhillJThomsonNR
2009
Evolutionary diversification of an ancient gene family
(rhs) through C-terminal displacement.
BMC Genomics
10
584
28. MacnabRM
1996
Flagella and motility.
UmbargerHE
Escherichia coli and Salmonella
Typhimurium: Cellular and Molecular Biology
2nd ed. Washington, DC
American Society for Microbiology
123
145
29. RenCPBeatsonSAParkhillJPallenMJ
2005
The Flag-2 locus, an ancestral gene cluster, is potentially
associated with a novel flagellar system from Escherichia
coli.
J Bacteriol
187
1430
1440
30. AldridgePKarlinseyJHughesKT
2003
The type III secretion chaperone FlgN regulates flagellar
assembly via a negative feedback loop containing its chaperone substrates
FlgK and FlgL.
Mol Microbiol
49
1333
1345
31. KhanMABouzariSMaCRosenbergerCMBergstromKS
2008
Flagellin-dependent and -independent inflammatory responses
following infection by enteropathogenic Escherichia coli
and Citrobacter rodentium.
Infect Immun
76
1410
1422
32. LiJSmithNHNelsonKCrichtonPBOldDC
1993
Evolutionary origin and radiation of the avian-adapted non-motile
salmonellae.
J Med Microbiol
38
129
139
33. LengelerJ
1977
Analysis of mutations affecting the dissimilation of galactitol
(dulcitol) in Escherichia coli K-12.
Mol Gen Genet
152
83
91
34. EcholsHGreenL
1971
Establishment and maintenance of repression by bacteriophage
lambda: the role of the cI, cII, and
cIII proteins.
Proc Natl Acad Sci U S A
68
2190
2194
35. PerkinsTTKingsleyRAFookesMCGardnerPPJamesKD
2009
A strand-specific RNA-Seq analysis of the transcriptome of the
typhoid bacillus Salmonella typhi.
PLoS Genet
5
e1000569
36. DengWde HoogCLYuHBLiYCroxenMA
2010
A comprehensive proteomic analysis of the type III secretome of
Citrobacter rodentium.
J Biol Chem
285
6790
6800
37. MorganGJHatfullGFCasjensSHendrixRW
2002
Bacteriophage Mu genome sequence: analysis and comparison with
Mu-like prophages in Haemophilus,
Neisseria and
Deinococcus.
J Mol Biol
317
337
359
38. ToussaintA
1985
Bacteriophage Mu and its use as a genetic tool.
GalizziA
Genetics of Bacteria
London
Academic Press
117
146
39. PettyNKFouldsIJPradelEEwbankJJSalmondGPC
2006
A generalized transducing phage (phiIF3) for the genomically
sequenced Serratia marcescens strain Db11: a tool for
functional genomics of an opportunistic human pathogen.
Microbiology
152
1701
1708
40. AckermannHW
2003
Bacteriophage observations and evolution.
Res Microbiol
154
245
251
41. WilesSClareSHarkerJHuettAYoungD
2004
Organ specificity, colonization and clearance dynamics in
vivo following oral challenges with the murine pathogen
Citrobacter rodentium.
Cell Microbiol
6
963
972
42. PettyNKToribioALGouldingDFouldsIThomsonN
2007
A generalized transducing phage for the murine pathogen
Citrobacter rodentium.
Microbiology
153
2984
2988
43. ScottAETimmsARConnertonPLLoc CarrilloCAdzfa RadzumK
2007
Genome dynamics of Campylobacter jejuni in
response to bacteriophage predation.
PLoS Pathog
3
e119
44. KraftCStackAJosenhansCNiehusEDietrichG
2006
Genomic changes during chronic Helicobacter
pylori infection.
J Bacteriol
188
249
254
45. GoerkeCMatias y PapenbergSDasbachSDietzKZiebachR
2004
Increased frequency of genomic alterations in
Staphylococcus aureus during chronic infection is in
part due to phage mobilization.
J Infect Dis
189
724
734
46. MatheeKNarasimhanGValdesCQiuXMatewishJM
2008
Dynamics of Pseudomonas aeruginosa genome
evolution.
Proc Natl Acad Sci U S A
105
3100
3105
47. BielaszewskaMPragerRKockRMellmannAZhangW
2007
Shiga toxin gene loss and transfer in vitro and
in vivo during enterohemorrhagic Escherichia
coli O26 infection in humans.
Appl Environ Microbiol
73
3144
3150
48. FriedrichAWZhangWBielaszewskaMMellmannAKockR
2007
Prevalence, virulence profiles, and clinical significance of
Shiga toxin-negative variants of enterohemorrhagic Escherichia
coli O157 infection in humans.
Clin Infect Dis
45
39
45
49. LevineMMNataroJPKarchHBaldiniMMKaperJB
1985
The diarrheal response of humans to some classic serotypes of
enteropathogenic Escherichia coli is dependent on a plasmid
encoding an enteroadhesiveness factor.
J Infect Dis
152
550
559
50. MellmannABielaszewskaMZimmerhacklLBPragerRHarmsenD
2005
Enterohemorrhagic Escherichia coli in human
infection: in vivo evolution of a bacterial
pathogen.
Clin Infect Dis
41
785
792
51. ThomsonNRClaytonDJWindhorstDVernikosGDavidsonS
2008
Comparative genome analysis of Salmonella
Enteritidis PT4 and Salmonella Gallinarum 287/91 provides
insights into evolutionary and host adaptation pathways.
Genome Res
18
1624
1637
52. HoltKEThomsonNRWainJLangridgeGCHasanR
2009
Pseudogene accumulation in the evolutionary histories of
Salmonella enterica serovars Paratyphi A and
Typhi.
BMC Genomics
10
36
53. ColeSTEiglmeierKParkhillJJamesKDThomsonNR
2001
Massive gene decay in the leprosy bacillus.
Nature
409
1007
1011
54. ParkhillJSebaihiaMPrestonAMurphyLDThomsonN
2003
Comparative analysis of the genome sequences of
Bordetella pertussis, Bordetella
parapertussis and Bordetella
bronchiseptica.
Nat Genet
35
32
40
55. QuailMASwerdlowHTurnerDJ
2009
Improved protocols for the Illumina Genome Analyzer sequencing
system.
Curr Protoc Hum Genet
62
18.2.1
18.2.27
56. AssefaSKeaneTMOttoTDNewboldCBerrimanM
2009
ABACAS: algorithm-based automatic contiguation of assembled
sequences.
Bioinformatics
25
1968
1969
57. CarverTJRutherfordKMBerrimanMRajandreamMABarrellBG
2005
ACT: the Artemis Comparison Tool.
Bioinformatics
21
3422
3423
58. NingZCoxAJMullikinJC
2001
SSAHA: a fast search method for large DNA
databases.
Genome Res
11
1725
1729
59. HarrisSRFeilEJHoldenMTQuailMANickersonEK
2010
Evolution of MRSA during hospital transmission and
intercontinental spread.
Science
327
469
474
60. CarverTBohmeUOttoTDParkhillJBerrimanM
2010
BamView: viewing mapped read alignment data in the context of the
reference sequence.
Bioinformatics
26
676
677
61. KadoCILiuST
1981
Rapid procedure for detection and isolation of large and small
plasmids.
J Bacteriol
145
1365
1373
62. CroucherNJFookesMCPerkinsTTTurnerDJMargueratSB
2009
A simple method for directional transcriptome sequencing using
Illumina technology.
Nucleic Acids Res
37
e148
63. CarverTThomsonNBleasbyABerrimanMParkhillJ
2009
DNAPlotter: circular and linear interactive genome
visualization.
Bioinformatics
25
119
120
64. FineranPCEversonLSlaterHSalmondGP
2005
A GntR family transcriptional regulator (PigT) controls
gluconate-mediated repression and defines a new, independent pathway for
regulation of the tripyrrole antibiotic, prodigiosin, in
Serratia.
Microbiology
151
3833
3845
65. WilesSDouganGFrankelG
2005
Emergence of a ‘hyperinfectious’ bacterial state
after passage of Citrobacter rodentium through the host
gastrointestinal tract.
Cell Microbiol
7
1163
1172
66. WilesSClareSHarkerJHuettAYoungD
2005
Organ-specificity, colonization and clearance dynamics in
vivo following oral challenges with the murine pathogen
Citrobacter rodentium.
Cell Microbiol
7
459
67. SullivanMJPettyNKBeatsonSA
2011
Easyfig: a genome comparison visualiser.
Bioinformatics. In press
68. RutherfordKParkhillJCrookJHorsnellTRiceP
2000
Artemis: sequence visualization and annotation.
Bioinformatics
16
944
945
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2011 Číslo 4
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- NF-κB Hyper-Activation by HTLV-1 Tax Induces Cellular Senescence, but Can Be Alleviated by the Viral Anti-Sense Protein HBZ
- Bacterial and Host Determinants of MAL Activation upon EPEC Infection: The Roles of Tir, ABRA, and FLRT3
- : Reservoir Hosts and Tracking the Emergence in Humans and Macaques
- On Being the Right Size: The Impact of Population Size and Stochastic Effects on the Evolution of Drug Resistance in Hospitals and the Community