#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

SUMO-Interacting Motifs of Human TRIM5α are Important for
Antiviral Activity


Human TRIM5α potently restricts particular strains of murine leukemia viruses

(the so-called N-tropic strains) but not others (the B- or NB-tropic strains)

during early stages of infection. We show that overexpression of SUMO-1 in human

293T cells, but not in mouse MDTF cells, profoundly blocks N-MLV infection. This

block is dependent on the tropism of the incoming virus, as neither B-, NB-, nor

the mutant R110E of N-MLV CA (a B-tropic switch) are affected by SUMO-1

overexpression. The block occurred prior to reverse transcription and could be

abrogated by large amounts of restricted virus. Knockdown of TRIM5α in 293T

SUMO-1-overexpressing cells resulted in ablation of the SUMO-1 antiviral

effects, and this loss of restriction could be restored by expression of a human

TRIM5α shRNA-resistant plasmid. Amino acid sequence analysis of human

TRIM5α revealed a consensus SUMO conjugation site at the N-terminus and

three putative SUMO interacting motifs (SIMs) in the B30.2 domain. Mutations of

the TRIM5α consensus SUMO conjugation site did not affect the antiviral

activity of TRIM5α in any of the cell types tested. Mutation of the SIM

consensus sequences, however, abolished TRIM5α antiviral activity against

N-MLV. Mutation of lysines at a potential site of SUMOylation in the CA region

of the Gag gene reduced the SUMO-1 block and the TRIM5α restriction of

N-MLV. Our data suggest a novel aspect of TRIM5α-mediated restriction, in

which the presence of intact SIMs in TRIM5α, and also the SUMO conjugation

of CA, are required for restriction. We propose that at least a portion of the

antiviral activity of TRIM5α is mediated through the binding of its SIMs to

SUMO-conjugated CA.


Vyšlo v časopise: SUMO-Interacting Motifs of Human TRIM5α are Important for Antiviral Activity. PLoS Pathog 7(4): e32767. doi:10.1371/journal.ppat.1002019
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002019

Souhrn

Human TRIM5α potently restricts particular strains of murine leukemia viruses

(the so-called N-tropic strains) but not others (the B- or NB-tropic strains)

during early stages of infection. We show that overexpression of SUMO-1 in human

293T cells, but not in mouse MDTF cells, profoundly blocks N-MLV infection. This

block is dependent on the tropism of the incoming virus, as neither B-, NB-, nor

the mutant R110E of N-MLV CA (a B-tropic switch) are affected by SUMO-1

overexpression. The block occurred prior to reverse transcription and could be

abrogated by large amounts of restricted virus. Knockdown of TRIM5α in 293T

SUMO-1-overexpressing cells resulted in ablation of the SUMO-1 antiviral

effects, and this loss of restriction could be restored by expression of a human

TRIM5α shRNA-resistant plasmid. Amino acid sequence analysis of human

TRIM5α revealed a consensus SUMO conjugation site at the N-terminus and

three putative SUMO interacting motifs (SIMs) in the B30.2 domain. Mutations of

the TRIM5α consensus SUMO conjugation site did not affect the antiviral

activity of TRIM5α in any of the cell types tested. Mutation of the SIM

consensus sequences, however, abolished TRIM5α antiviral activity against

N-MLV. Mutation of lysines at a potential site of SUMOylation in the CA region

of the Gag gene reduced the SUMO-1 block and the TRIM5α restriction of

N-MLV. Our data suggest a novel aspect of TRIM5α-mediated restriction, in

which the presence of intact SIMs in TRIM5α, and also the SUMO conjugation

of CA, are required for restriction. We propose that at least a portion of the

antiviral activity of TRIM5α is mediated through the binding of its SIMs to

SUMO-conjugated CA.


Zdroje

1. WolfDGoffSP

2008

Host restriction factors blocking retroviral

replication.

Annu Rev Genet

42

143

163

2. LillyF

1967

Susceptibility to two strains of Friend leukemia virus in

mice.

Science

155

461

462

3. BestSLe TissierPTowersGStoyeJP

1996

Positional cloning of the mouse retrovirus restriction gene

Fv1.

Nature

382

826

829

4. HartleyJWRoweWPHuebnerRJ

1970

Host-range restrictions of murine leukemia viruses in mouse

embryo cell cultures.

J Virol

5

221

225

5. HopkinsNSchindlerJHynesR

1977

Six-NB-tropic murine leukemia viruses derived from a B-tropic

virus of BALB/c have altered p30.

J Virol

21

309

318

6. DesGroseillersLJolicoeurP

1983

Physical mapping of the Fv-1 tropism host range determinant of

BALB/c murine leukemia viruses.

J Virol

48

685

696

7. KozakCAChakrabortiA

1996

Single amino acid changes in the murine leukemia virus capsid

protein gene define the target of Fv1 resistance.

Virology

225

300

305

8. RoweWP

1972

Studies of genetic transmission of murine leukemia virus by AKR

mice. I. Crosses with Fv-1 n strains of mice.

J Exp Med

136

1272

1285

9. JolicoeurPBaltimoreD

1976

Effect of Fv-1 gene product on proviral DNA formation and

integration in cells infected with murine leukemia viruses.

Proc Natl Acad Sci U S A

73

2236

2240

10. BooneLRInnesCLHeitmanCK

1990

Abrogation of Fv-1 restriction by genome-deficient virions

produced by a retrovirus packaging cell line.

J Virol

64

3376

3381

11. StremlauMOwensCMPerronMJKiesslingMAutissierP

2004

The cytoplasmic body component TRIM5alpha restricts HIV-1

infection in Old World monkeys.

Nature

427

848

853

12. HatziioannouTPerez-CaballeroDYangACowanSBieniaszPD

2004

Retrovirus resistance factors Ref1 and Lv1 are species-specific

variants of TRIM5alpha.

Proc Natl Acad Sci U S A

101

10774

10779

13. KeckesovaZYlinenLMTowersGJ

2004

The human and African green monkey TRIM5alpha genes encode Ref1

and Lv1 retroviral restriction factor activities.

Proc Natl Acad Sci U S A

101

10780

10785

14. PerronMJStremlauMSongBUlmWMulliganRC

2004

TRIM5alpha mediates the postentry block to N-tropic murine

leukemia viruses in human cells.

Proc Natl Acad Sci U S A

101

11827

11832

15. YapMWNisoleSLynchCStoyeJP

2004

Trim5alpha protein restricts both HIV-1 and murine leukemia

virus.

Proc Natl Acad Sci U S A

101

10786

10791

16. BesnierCTakeuchiYTowersG

2002

Restriction of lentivirus in monkeys.

Proc Natl Acad Sci U S A

99

11920

11925

17. BesnierCYlinenLStrangeBListerATakeuchiY

2003

Characterization of murine leukemia virus restriction in

mammals.

J Virol

77

13403

13406

18. CowanSHatziioannouTCunninghamTMuesingMAGottlingerHG

2002

Cellular inhibitors with Fv1-like activity restrict human and

simian immunodeficiency virus tropism.

Proc Natl Acad Sci U S A

99

11914

11919

19. HimathongkhamSLuciwPA

1996

Restriction of HIV-1 (subtype B) replication at the entry step in

rhesus macaque cells.

Virology

219

485

488

20. TowersGBockMMartinSTakeuchiYStoyeJP

2000

A conserved mechanism of retrovirus restriction in

mammals.

Proc Natl Acad Sci U S A

97

12295

12299

21. YapMWNisoleSStoyeJP

2005

A single amino acid change in the SPRY domain of human Trim5alpha

leads to HIV-1 restriction.

Curr Biol

15

73

78

22. NisoleSStoyeJPSaibA

2005

TRIM family proteins: retroviral restriction and antiviral

defence.

Nat Rev Microbiol

3

799

808

23. NakayamaEEMiyoshiHNagaiYShiodaT

2005

A specific region of 37 amino acid residues in the SPRY (B30.2)

domain of African green monkey TRIM5alpha determines species-specific

restriction of simian immunodeficiency virus SIVmac

infection.

J Virol

79

8870

8877

24. Perez-CaballeroDHatziioannouTZhangFCowanSBieniaszPD

2005

Restriction of human immunodeficiency virus type 1 by TRIM-CypA

occurs with rapid kinetics and independently of cytoplasmic bodies,

ubiquitin, and proteasome activity.

J Virol

79

15567

15572

25. SebastianSLubanJ

2005

TRIM5alpha selectively binds a restriction-sensitive retroviral

capsid.

Retrovirology

2

40

26. StremlauMPerronMLeeMLiYSongB

2006

Specific recognition and accelerated uncoating of retroviral

capsids by the TRIM5alpha restriction factor.

Proc Natl Acad Sci U S A

103

5514

5519

27. StremlauMPerronMWelikalaSSodroskiJ

2005

Species-specific variation in the B30.2(SPRY) domain of

TRIM5alpha determines the potency of human immunodeficiency virus

restriction.

J Virol

79

3139

3145

28. Diaz-GrifferoFLiXJavanbakhtHSongBWelikalaS

2006

Rapid turnover and polyubiquitylation of the retroviral

restriction factor TRIM5.

Virology

349

300

315

29. MassiahMAMattsJAShortKMSimmonsBNSingireddyS

2007

Solution structure of the MID1 B-box2 CHC(D/C)C(2)H(2)

zinc-binding domain: insights into an evolutionarily conserved RING

fold.

J Mol Biol

369

1

10

30. BerthouxLSebastianSSayahDMLubanJ

2005

Disruption of human TRIM5alpha antiviral activity by nonhuman

primate orthologues.

J Virol

79

7883

7888

31. MischeCCJavanbakhtHSongBDiaz-GrifferoFStremlauM

2005

Retroviral restriction factor TRIM5alpha is a

trimer.

J Virol

79

14446

14450

32. Perez-CaballeroDHatziioannouTYangACowanSBieniaszPD

2005

Human tripartite motif 5alpha domains responsible for retrovirus

restriction activity and specificity.

J Virol

79

8969

8978

33. HayRT

2005

SUMO: a history of modification.

Mol Cell

18

1

12

34. Geiss-FriedlanderRMelchiorF

2007

Concepts in sumoylation: a decade on.

Nat Rev Mol Cell Biol

8

947

956

35. DesterroJMThomsonJHayRT

1997

Ubch9 conjugates SUMO but not ubiquitin.

FEBS Lett

417

297

300

36. SchwarzSEMatuschewskiKLiakopoulosDScheffnerMJentschS

1998

The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the

UBC9 E2 enzyme.

Proc Natl Acad Sci U S A

95

560

564

37. HochstrasserM

2001

SP-RING for SUMO: new functions bloom for a ubiquitin-like

protein.

Cell

107

5

8

38. JacksonPK

2001

A new RING for SUMO: wrestling transcriptional responses into

nuclear bodies with PIAS family E3 SUMO ligases.

Genes Dev

15

3053

3058

39. VergerAPerdomoJCrossleyM

2003

Modification with SUMO. A role in transcriptional

regulation.

EMBO Rep

4

137

142

40. SaitohHHincheyJ

2000

Functional heterogeneity of small ubiquitin-related protein

modifiers SUMO-1 versus SUMO-2/3.

J Biol Chem

275

6252

6258

41. Rosas-AcostaGRussellWKDeyrieuxARussellDHWilsonVG

2005

A universal strategy for proteomic studies of SUMO and other

ubiquitin-like modifiers.

Mol Cell Proteomics

4

56

72

42. VertegaalACAndersenJSOggSCHayRTMannM

2006

Distinct and overlapping sets of SUMO-1 and SUMO-2 target

proteins revealed by quantitative proteomics.

Mol Cell Proteomics

5

2298

2310

43. MintyADumontXKaghadMCaputD

2000

Covalent modification of p73alpha by SUMO-1. Two-hybrid screening

with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1

interaction motif.

J Biol Chem

275

36316

36323

44. SampsonDAWangMMatunisMJ

2001

The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence

mediates Ubc9 binding and is essential for SUMO-1

modification.

J Biol Chem

276

21664

21669

45. HannichJTLewisAKroetzMBLiSJHeideH

2005

Defining the SUMO-modified proteome by multiple approaches in

Saccharomyces cerevisiae.

J Biol Chem

280

4102

4110

46. SongJZhangZHuWChenY

2005

Small ubiquitin-like modifier (SUMO) recognition of a SUMO

binding motif: a reversal of the bound orientation.

J Biol Chem

280

40122

40129

47. HeckerCMRabillerMHaglundKBayerPDikicI

2006

Specification of SUMO1- and SUMO2-interacting

motifs.

J Biol Chem

281

16117

16127

48. BoggioRChioccaS

2006

Viruses and sumoylation: recent highlights.

Curr Opin Microbiol

9

430

436

49. BoggioRColomboRHayRTDraettaGFChioccaS

2004

A mechanism for inhibiting the SUMO pathway.

Mol Cell

16

549

561

50. ParkinsonJEverettRD

2000

Alphaherpesvirus proteins related to herpes simplex virus type 1

ICP0 affect cellular structures and proteins.

J Virol

74

10006

10017

51. LamsoulILodewickJLebrunSBrasseurRBurnyA

2005

Exclusive ubiquitination and sumoylation on overlapping lysine

residues mediate NF-kappaB activation by the human T-cell leukemia virus tax

oncoprotein.

Mol Cell Biol

25

10391

10406

52. GurerCBerthouxLLubanJ

2005

Covalent modification of human immunodeficiency virus type 1 p6

by SUMO-1.

J Virol

79

910

917

53. WeldonRAJrSarkarPBrownSMWeldonSK

2003

Mason-Pfizer monkey virus Gag proteins interact with the human

sumo conjugating enzyme, hUbc9.

Virology

314

62

73

54. YuehALeungJBhattacharyyaSPerroneLAde los SantosK

2006

Interaction of moloney murine leukemia virus capsid with Ubc9 and

PIASy mediates SUMO-1 addition required early in infection.

J Virol

80

342

352

55. AagaardLMikkelsenJGWarmingSDuchMPedersenFS

2002

Fv1-like restriction of N-tropic replication-competent murine

leukaemia viruses in mCAT-1-expressing human cells.

J Gen Virol

83

439

442

56. TowersGCollinsMTakeuchiY

2002

Abrogation of Ref1 retrovirus restriction in human

cells.

J Virol

76

2548

2550

57. ShibataRSakaiHKawamuraMTokunagaKAdachiA

1995

Early replication block of human immunodeficiency virus type 1 in

monkey cells.

J Gen Virol

76

Pt 11

2723

2730

58. SebastianSGrutterCStrambio de CastilliaCPertelTOlivariS

2009

An invariant surface patch on the TRIM5alpha PRYSPRY domain is

required for retroviral restriction but dispensable for capsid

binding.

J Virol

83

3365

3373

59. SongBDiaz-GrifferoFParkDHRogersTStremlauM

2005

TRIM5alpha association with cytoplasmic bodies is not required

for antiretroviral activity.

Virology

343

201

211

60. CampbellEMDoddingMPYapMWWuXGallois-MontbrunS

2007

TRIM5 alpha cytoplasmic bodies are highly dynamic

structures.

Mol Biol Cell

18

2102

2111

61. AndersonJLCampbellEMWuXVandegraaffNEngelmanA

2006

Proteasome inhibition reveals that a functional preintegration

complex intermediate can be generated during restriction by diverse TRIM5

proteins.

J Virol

80

9754

9760

62. SongBGoldBO'HuiginCJavanbakhtHLiX

2005

The B30.2(SPRY) domain of the retroviral restriction factor

TRIM5alpha exhibits lineage-specific length and sequence variation in

primates.

J Virol

79

6111

6121

63. SongBJavanbakhtHPerronMParkDHStremlauM

2005

Retrovirus restriction by TRIM5alpha variants from Old World and

New World primates.

J Virol

79

3930

3937

64. ShiJAikenC

2006

Saturation of TRIM5 alpha-mediated restriction of HIV-1 infection

depends on the stability of the incoming viral capsid.

Virology

350

493

500

65. YlinenLMKeckesovaZWebbBLGiffordRJSmithTP

2006

Isolation of an active Lv1 gene from cattle indicates that

tripartite motif protein-mediated innate immunity to retroviral infection is

widespread among mammals.

J Virol

80

7332

7338

66. JavanbakhtHDiaz-GrifferoFStremlauMSiZSodroskiJ

2005

The contribution of RING and B-box 2 domains to retroviral

restriction mediated by monkey TRIM5alpha.

J Biol Chem

280

26933

26940

67. LiXGoldBO'HUiginCDiaz-GrifferoFSongB

2007

Unique features of TRIM5alpha among closely related human TRIM

family members.

Virology

360

419

433

68. LiXLiYStremlauMYuanWSongB

2006

Functional replacement of the RING, B-box 2, and coiled-coil

domains of tripartite motif 5alpha (TRIM5alpha) by heterologous TRIM

domains.

J Virol

80

6198

6206

69. PerronMJStremlauMLeeMJavanbakhtHSongB

2007

The human TRIM5alpha restriction factor mediates accelerated

uncoating of the N-tropic murine leukemia virus capsid.

J Virol

81

2138

2148

70. Diaz-GrifferoFKarAPerronMXiangSHJavanbakhtH

2007

Modulation of retroviral restriction and proteasome

inhibitor-resistant turnover by changes in the TRIM5alpha B-box 2

domain.

J Virol

81

10362

10378

71. YamauchiKWadaKTanjiKTanakaMKamitaniT

2008

Ubiquitination of E3 ubiquitin ligase TRIM5 alpha and its

potential role.

FEBS J

275

1540

1555

72. PruddenJPebernardSRaffaGSlavinDAPerryJJ

2007

SUMO-targeted ubiquitin ligases in genome

stability.

EMBO J

26

4089

4101

73. UzunovaKGottscheKMitevaMWeisshaarSRGlanemannC

2007

Ubiquitin-dependent proteolytic control of SUMO

conjugates.

J Biol Chem

282

34167

34175

74. GeoffroyMCHayRT

2009

An additional role for SUMO in ubiquitin-mediated

proteolysis.

Nat Rev Mol Cell Biol

10

564

568

75. ReymondAMeroniGFantozziAMerlaGCairoS

2001

The tripartite motif family identifies cell

compartments.

EMBO J

20

2140

2151

76. TavalaiNStammingerT

2008

New insights into the role of the subnuclear structure ND10 for

viral infection.

Biochim Biophys Acta

1783

2207

2221

77. MatunisMJZhangXDEllisNA

2006

SUMO: the glue that binds.

Dev Cell

11

596

597

78. ShenTHLinHKScaglioniPPYungTMPandolfiPP

2006

The mechanisms of PML-nuclear body formation.

Mol Cell

24

331

339

79. Weidtkamp-PetersSLenserTNegorevDGerstnerNHofmannTG

2008

Dynamics of component exchange at PML nuclear

bodies.

J Cell Sci

121

2731

2743

80. ReicheltMWangLSommerMPerrinoJNourAM

2011

Entrapment of Viral Capsids in Nuclear PML Cages Is an Intrinsic

Antiviral Host Defense against Varicella-Zoster Virus.

PLoS Pathog

7

e1001266

81. CampbellEMPerezOAndersonJLHopeTJ

2008

Visualization of a proteasome-independent intermediate during

restriction of HIV-1 by rhesus TRIM5alpha.

J Cell Biol

180

549

561

82. MortuzaGBDoddingMPGoldstoneDCHaireLFStoyeJP

2008

Structure of B-MLV capsid amino-terminal domain reveals key

features of viral tropism, gag assembly and core formation.

J Mol Biol

376

1493

1508

83. BockMBishopKNTowersGStoyeJP

2000

Use of a transient assay for studying the genetic determinants of

Fv1 restriction.

J Virol

74

7422

7430

84. FuDCollinsK

2006

Human telomerase and Cajal body ribonucleoproteins share a unique

specificity of Sm protein association.

Genes Dev

20

531

536

85. SebastianSSokolskajaELubanJ

2006

Arsenic counteracts human immunodeficiency virus type 1

restriction by various TRIM5 orthologues in a cell type-dependent

manner.

J Virol

80

2051

2054

86. HaedickeJde Los SantosKGoffSPNaghaviMH

2008

The Ezrin-radixin-moesin family member ezrin regulates stable

microtubule formation and retroviral infection.

J Virol

82

4665

4670

87. ArriagadaGParedesRvan WijnenAJLianJBvan ZundertB

2010

1alpha,25-dihydroxy vitamin D(3) induces nuclear matrix

association of the 1alpha,25-dihydroxy vitamin D(3) receptor in osteoblasts

independently of its ability to bind DNA.

J Cell Physiol

222

336

346

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#