SUMO-Interacting Motifs of Human TRIM5α are Important for
Antiviral Activity
Human TRIM5α potently restricts particular strains of murine leukemia viruses
(the so-called N-tropic strains) but not others (the B- or NB-tropic strains)
during early stages of infection. We show that overexpression of SUMO-1 in human
293T cells, but not in mouse MDTF cells, profoundly blocks N-MLV infection. This
block is dependent on the tropism of the incoming virus, as neither B-, NB-, nor
the mutant R110E of N-MLV CA (a B-tropic switch) are affected by SUMO-1
overexpression. The block occurred prior to reverse transcription and could be
abrogated by large amounts of restricted virus. Knockdown of TRIM5α in 293T
SUMO-1-overexpressing cells resulted in ablation of the SUMO-1 antiviral
effects, and this loss of restriction could be restored by expression of a human
TRIM5α shRNA-resistant plasmid. Amino acid sequence analysis of human
TRIM5α revealed a consensus SUMO conjugation site at the N-terminus and
three putative SUMO interacting motifs (SIMs) in the B30.2 domain. Mutations of
the TRIM5α consensus SUMO conjugation site did not affect the antiviral
activity of TRIM5α in any of the cell types tested. Mutation of the SIM
consensus sequences, however, abolished TRIM5α antiviral activity against
N-MLV. Mutation of lysines at a potential site of SUMOylation in the CA region
of the Gag gene reduced the SUMO-1 block and the TRIM5α restriction of
N-MLV. Our data suggest a novel aspect of TRIM5α-mediated restriction, in
which the presence of intact SIMs in TRIM5α, and also the SUMO conjugation
of CA, are required for restriction. We propose that at least a portion of the
antiviral activity of TRIM5α is mediated through the binding of its SIMs to
SUMO-conjugated CA.
Vyšlo v časopise:
SUMO-Interacting Motifs of Human TRIM5α are Important for
Antiviral Activity. PLoS Pathog 7(4): e32767. doi:10.1371/journal.ppat.1002019
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1002019
Souhrn
Human TRIM5α potently restricts particular strains of murine leukemia viruses
(the so-called N-tropic strains) but not others (the B- or NB-tropic strains)
during early stages of infection. We show that overexpression of SUMO-1 in human
293T cells, but not in mouse MDTF cells, profoundly blocks N-MLV infection. This
block is dependent on the tropism of the incoming virus, as neither B-, NB-, nor
the mutant R110E of N-MLV CA (a B-tropic switch) are affected by SUMO-1
overexpression. The block occurred prior to reverse transcription and could be
abrogated by large amounts of restricted virus. Knockdown of TRIM5α in 293T
SUMO-1-overexpressing cells resulted in ablation of the SUMO-1 antiviral
effects, and this loss of restriction could be restored by expression of a human
TRIM5α shRNA-resistant plasmid. Amino acid sequence analysis of human
TRIM5α revealed a consensus SUMO conjugation site at the N-terminus and
three putative SUMO interacting motifs (SIMs) in the B30.2 domain. Mutations of
the TRIM5α consensus SUMO conjugation site did not affect the antiviral
activity of TRIM5α in any of the cell types tested. Mutation of the SIM
consensus sequences, however, abolished TRIM5α antiviral activity against
N-MLV. Mutation of lysines at a potential site of SUMOylation in the CA region
of the Gag gene reduced the SUMO-1 block and the TRIM5α restriction of
N-MLV. Our data suggest a novel aspect of TRIM5α-mediated restriction, in
which the presence of intact SIMs in TRIM5α, and also the SUMO conjugation
of CA, are required for restriction. We propose that at least a portion of the
antiviral activity of TRIM5α is mediated through the binding of its SIMs to
SUMO-conjugated CA.
Zdroje
1. WolfDGoffSP
2008
Host restriction factors blocking retroviral
replication.
Annu Rev Genet
42
143
163
2. LillyF
1967
Susceptibility to two strains of Friend leukemia virus in
mice.
Science
155
461
462
3. BestSLe TissierPTowersGStoyeJP
1996
Positional cloning of the mouse retrovirus restriction gene
Fv1.
Nature
382
826
829
4. HartleyJWRoweWPHuebnerRJ
1970
Host-range restrictions of murine leukemia viruses in mouse
embryo cell cultures.
J Virol
5
221
225
5. HopkinsNSchindlerJHynesR
1977
Six-NB-tropic murine leukemia viruses derived from a B-tropic
virus of BALB/c have altered p30.
J Virol
21
309
318
6. DesGroseillersLJolicoeurP
1983
Physical mapping of the Fv-1 tropism host range determinant of
BALB/c murine leukemia viruses.
J Virol
48
685
696
7. KozakCAChakrabortiA
1996
Single amino acid changes in the murine leukemia virus capsid
protein gene define the target of Fv1 resistance.
Virology
225
300
305
8. RoweWP
1972
Studies of genetic transmission of murine leukemia virus by AKR
mice. I. Crosses with Fv-1 n strains of mice.
J Exp Med
136
1272
1285
9. JolicoeurPBaltimoreD
1976
Effect of Fv-1 gene product on proviral DNA formation and
integration in cells infected with murine leukemia viruses.
Proc Natl Acad Sci U S A
73
2236
2240
10. BooneLRInnesCLHeitmanCK
1990
Abrogation of Fv-1 restriction by genome-deficient virions
produced by a retrovirus packaging cell line.
J Virol
64
3376
3381
11. StremlauMOwensCMPerronMJKiesslingMAutissierP
2004
The cytoplasmic body component TRIM5alpha restricts HIV-1
infection in Old World monkeys.
Nature
427
848
853
12. HatziioannouTPerez-CaballeroDYangACowanSBieniaszPD
2004
Retrovirus resistance factors Ref1 and Lv1 are species-specific
variants of TRIM5alpha.
Proc Natl Acad Sci U S A
101
10774
10779
13. KeckesovaZYlinenLMTowersGJ
2004
The human and African green monkey TRIM5alpha genes encode Ref1
and Lv1 retroviral restriction factor activities.
Proc Natl Acad Sci U S A
101
10780
10785
14. PerronMJStremlauMSongBUlmWMulliganRC
2004
TRIM5alpha mediates the postentry block to N-tropic murine
leukemia viruses in human cells.
Proc Natl Acad Sci U S A
101
11827
11832
15. YapMWNisoleSLynchCStoyeJP
2004
Trim5alpha protein restricts both HIV-1 and murine leukemia
virus.
Proc Natl Acad Sci U S A
101
10786
10791
16. BesnierCTakeuchiYTowersG
2002
Restriction of lentivirus in monkeys.
Proc Natl Acad Sci U S A
99
11920
11925
17. BesnierCYlinenLStrangeBListerATakeuchiY
2003
Characterization of murine leukemia virus restriction in
mammals.
J Virol
77
13403
13406
18. CowanSHatziioannouTCunninghamTMuesingMAGottlingerHG
2002
Cellular inhibitors with Fv1-like activity restrict human and
simian immunodeficiency virus tropism.
Proc Natl Acad Sci U S A
99
11914
11919
19. HimathongkhamSLuciwPA
1996
Restriction of HIV-1 (subtype B) replication at the entry step in
rhesus macaque cells.
Virology
219
485
488
20. TowersGBockMMartinSTakeuchiYStoyeJP
2000
A conserved mechanism of retrovirus restriction in
mammals.
Proc Natl Acad Sci U S A
97
12295
12299
21. YapMWNisoleSStoyeJP
2005
A single amino acid change in the SPRY domain of human Trim5alpha
leads to HIV-1 restriction.
Curr Biol
15
73
78
22. NisoleSStoyeJPSaibA
2005
TRIM family proteins: retroviral restriction and antiviral
defence.
Nat Rev Microbiol
3
799
808
23. NakayamaEEMiyoshiHNagaiYShiodaT
2005
A specific region of 37 amino acid residues in the SPRY (B30.2)
domain of African green monkey TRIM5alpha determines species-specific
restriction of simian immunodeficiency virus SIVmac
infection.
J Virol
79
8870
8877
24. Perez-CaballeroDHatziioannouTZhangFCowanSBieniaszPD
2005
Restriction of human immunodeficiency virus type 1 by TRIM-CypA
occurs with rapid kinetics and independently of cytoplasmic bodies,
ubiquitin, and proteasome activity.
J Virol
79
15567
15572
25. SebastianSLubanJ
2005
TRIM5alpha selectively binds a restriction-sensitive retroviral
capsid.
Retrovirology
2
40
26. StremlauMPerronMLeeMLiYSongB
2006
Specific recognition and accelerated uncoating of retroviral
capsids by the TRIM5alpha restriction factor.
Proc Natl Acad Sci U S A
103
5514
5519
27. StremlauMPerronMWelikalaSSodroskiJ
2005
Species-specific variation in the B30.2(SPRY) domain of
TRIM5alpha determines the potency of human immunodeficiency virus
restriction.
J Virol
79
3139
3145
28. Diaz-GrifferoFLiXJavanbakhtHSongBWelikalaS
2006
Rapid turnover and polyubiquitylation of the retroviral
restriction factor TRIM5.
Virology
349
300
315
29. MassiahMAMattsJAShortKMSimmonsBNSingireddyS
2007
Solution structure of the MID1 B-box2 CHC(D/C)C(2)H(2)
zinc-binding domain: insights into an evolutionarily conserved RING
fold.
J Mol Biol
369
1
10
30. BerthouxLSebastianSSayahDMLubanJ
2005
Disruption of human TRIM5alpha antiviral activity by nonhuman
primate orthologues.
J Virol
79
7883
7888
31. MischeCCJavanbakhtHSongBDiaz-GrifferoFStremlauM
2005
Retroviral restriction factor TRIM5alpha is a
trimer.
J Virol
79
14446
14450
32. Perez-CaballeroDHatziioannouTYangACowanSBieniaszPD
2005
Human tripartite motif 5alpha domains responsible for retrovirus
restriction activity and specificity.
J Virol
79
8969
8978
33. HayRT
2005
SUMO: a history of modification.
Mol Cell
18
1
12
34. Geiss-FriedlanderRMelchiorF
2007
Concepts in sumoylation: a decade on.
Nat Rev Mol Cell Biol
8
947
956
35. DesterroJMThomsonJHayRT
1997
Ubch9 conjugates SUMO but not ubiquitin.
FEBS Lett
417
297
300
36. SchwarzSEMatuschewskiKLiakopoulosDScheffnerMJentschS
1998
The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the
UBC9 E2 enzyme.
Proc Natl Acad Sci U S A
95
560
564
37. HochstrasserM
2001
SP-RING for SUMO: new functions bloom for a ubiquitin-like
protein.
Cell
107
5
8
38. JacksonPK
2001
A new RING for SUMO: wrestling transcriptional responses into
nuclear bodies with PIAS family E3 SUMO ligases.
Genes Dev
15
3053
3058
39. VergerAPerdomoJCrossleyM
2003
Modification with SUMO. A role in transcriptional
regulation.
EMBO Rep
4
137
142
40. SaitohHHincheyJ
2000
Functional heterogeneity of small ubiquitin-related protein
modifiers SUMO-1 versus SUMO-2/3.
J Biol Chem
275
6252
6258
41. Rosas-AcostaGRussellWKDeyrieuxARussellDHWilsonVG
2005
A universal strategy for proteomic studies of SUMO and other
ubiquitin-like modifiers.
Mol Cell Proteomics
4
56
72
42. VertegaalACAndersenJSOggSCHayRTMannM
2006
Distinct and overlapping sets of SUMO-1 and SUMO-2 target
proteins revealed by quantitative proteomics.
Mol Cell Proteomics
5
2298
2310
43. MintyADumontXKaghadMCaputD
2000
Covalent modification of p73alpha by SUMO-1. Two-hybrid screening
with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1
interaction motif.
J Biol Chem
275
36316
36323
44. SampsonDAWangMMatunisMJ
2001
The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence
mediates Ubc9 binding and is essential for SUMO-1
modification.
J Biol Chem
276
21664
21669
45. HannichJTLewisAKroetzMBLiSJHeideH
2005
Defining the SUMO-modified proteome by multiple approaches in
Saccharomyces cerevisiae.
J Biol Chem
280
4102
4110
46. SongJZhangZHuWChenY
2005
Small ubiquitin-like modifier (SUMO) recognition of a SUMO
binding motif: a reversal of the bound orientation.
J Biol Chem
280
40122
40129
47. HeckerCMRabillerMHaglundKBayerPDikicI
2006
Specification of SUMO1- and SUMO2-interacting
motifs.
J Biol Chem
281
16117
16127
48. BoggioRChioccaS
2006
Viruses and sumoylation: recent highlights.
Curr Opin Microbiol
9
430
436
49. BoggioRColomboRHayRTDraettaGFChioccaS
2004
A mechanism for inhibiting the SUMO pathway.
Mol Cell
16
549
561
50. ParkinsonJEverettRD
2000
Alphaherpesvirus proteins related to herpes simplex virus type 1
ICP0 affect cellular structures and proteins.
J Virol
74
10006
10017
51. LamsoulILodewickJLebrunSBrasseurRBurnyA
2005
Exclusive ubiquitination and sumoylation on overlapping lysine
residues mediate NF-kappaB activation by the human T-cell leukemia virus tax
oncoprotein.
Mol Cell Biol
25
10391
10406
52. GurerCBerthouxLLubanJ
2005
Covalent modification of human immunodeficiency virus type 1 p6
by SUMO-1.
J Virol
79
910
917
53. WeldonRAJrSarkarPBrownSMWeldonSK
2003
Mason-Pfizer monkey virus Gag proteins interact with the human
sumo conjugating enzyme, hUbc9.
Virology
314
62
73
54. YuehALeungJBhattacharyyaSPerroneLAde los SantosK
2006
Interaction of moloney murine leukemia virus capsid with Ubc9 and
PIASy mediates SUMO-1 addition required early in infection.
J Virol
80
342
352
55. AagaardLMikkelsenJGWarmingSDuchMPedersenFS
2002
Fv1-like restriction of N-tropic replication-competent murine
leukaemia viruses in mCAT-1-expressing human cells.
J Gen Virol
83
439
442
56. TowersGCollinsMTakeuchiY
2002
Abrogation of Ref1 retrovirus restriction in human
cells.
J Virol
76
2548
2550
57. ShibataRSakaiHKawamuraMTokunagaKAdachiA
1995
Early replication block of human immunodeficiency virus type 1 in
monkey cells.
J Gen Virol
76
Pt 11
2723
2730
58. SebastianSGrutterCStrambio de CastilliaCPertelTOlivariS
2009
An invariant surface patch on the TRIM5alpha PRYSPRY domain is
required for retroviral restriction but dispensable for capsid
binding.
J Virol
83
3365
3373
59. SongBDiaz-GrifferoFParkDHRogersTStremlauM
2005
TRIM5alpha association with cytoplasmic bodies is not required
for antiretroviral activity.
Virology
343
201
211
60. CampbellEMDoddingMPYapMWWuXGallois-MontbrunS
2007
TRIM5 alpha cytoplasmic bodies are highly dynamic
structures.
Mol Biol Cell
18
2102
2111
61. AndersonJLCampbellEMWuXVandegraaffNEngelmanA
2006
Proteasome inhibition reveals that a functional preintegration
complex intermediate can be generated during restriction by diverse TRIM5
proteins.
J Virol
80
9754
9760
62. SongBGoldBO'HuiginCJavanbakhtHLiX
2005
The B30.2(SPRY) domain of the retroviral restriction factor
TRIM5alpha exhibits lineage-specific length and sequence variation in
primates.
J Virol
79
6111
6121
63. SongBJavanbakhtHPerronMParkDHStremlauM
2005
Retrovirus restriction by TRIM5alpha variants from Old World and
New World primates.
J Virol
79
3930
3937
64. ShiJAikenC
2006
Saturation of TRIM5 alpha-mediated restriction of HIV-1 infection
depends on the stability of the incoming viral capsid.
Virology
350
493
500
65. YlinenLMKeckesovaZWebbBLGiffordRJSmithTP
2006
Isolation of an active Lv1 gene from cattle indicates that
tripartite motif protein-mediated innate immunity to retroviral infection is
widespread among mammals.
J Virol
80
7332
7338
66. JavanbakhtHDiaz-GrifferoFStremlauMSiZSodroskiJ
2005
The contribution of RING and B-box 2 domains to retroviral
restriction mediated by monkey TRIM5alpha.
J Biol Chem
280
26933
26940
67. LiXGoldBO'HUiginCDiaz-GrifferoFSongB
2007
Unique features of TRIM5alpha among closely related human TRIM
family members.
Virology
360
419
433
68. LiXLiYStremlauMYuanWSongB
2006
Functional replacement of the RING, B-box 2, and coiled-coil
domains of tripartite motif 5alpha (TRIM5alpha) by heterologous TRIM
domains.
J Virol
80
6198
6206
69. PerronMJStremlauMLeeMJavanbakhtHSongB
2007
The human TRIM5alpha restriction factor mediates accelerated
uncoating of the N-tropic murine leukemia virus capsid.
J Virol
81
2138
2148
70. Diaz-GrifferoFKarAPerronMXiangSHJavanbakhtH
2007
Modulation of retroviral restriction and proteasome
inhibitor-resistant turnover by changes in the TRIM5alpha B-box 2
domain.
J Virol
81
10362
10378
71. YamauchiKWadaKTanjiKTanakaMKamitaniT
2008
Ubiquitination of E3 ubiquitin ligase TRIM5 alpha and its
potential role.
FEBS J
275
1540
1555
72. PruddenJPebernardSRaffaGSlavinDAPerryJJ
2007
SUMO-targeted ubiquitin ligases in genome
stability.
EMBO J
26
4089
4101
73. UzunovaKGottscheKMitevaMWeisshaarSRGlanemannC
2007
Ubiquitin-dependent proteolytic control of SUMO
conjugates.
J Biol Chem
282
34167
34175
74. GeoffroyMCHayRT
2009
An additional role for SUMO in ubiquitin-mediated
proteolysis.
Nat Rev Mol Cell Biol
10
564
568
75. ReymondAMeroniGFantozziAMerlaGCairoS
2001
The tripartite motif family identifies cell
compartments.
EMBO J
20
2140
2151
76. TavalaiNStammingerT
2008
New insights into the role of the subnuclear structure ND10 for
viral infection.
Biochim Biophys Acta
1783
2207
2221
77. MatunisMJZhangXDEllisNA
2006
SUMO: the glue that binds.
Dev Cell
11
596
597
78. ShenTHLinHKScaglioniPPYungTMPandolfiPP
2006
The mechanisms of PML-nuclear body formation.
Mol Cell
24
331
339
79. Weidtkamp-PetersSLenserTNegorevDGerstnerNHofmannTG
2008
Dynamics of component exchange at PML nuclear
bodies.
J Cell Sci
121
2731
2743
80. ReicheltMWangLSommerMPerrinoJNourAM
2011
Entrapment of Viral Capsids in Nuclear PML Cages Is an Intrinsic
Antiviral Host Defense against Varicella-Zoster Virus.
PLoS Pathog
7
e1001266
81. CampbellEMPerezOAndersonJLHopeTJ
2008
Visualization of a proteasome-independent intermediate during
restriction of HIV-1 by rhesus TRIM5alpha.
J Cell Biol
180
549
561
82. MortuzaGBDoddingMPGoldstoneDCHaireLFStoyeJP
2008
Structure of B-MLV capsid amino-terminal domain reveals key
features of viral tropism, gag assembly and core formation.
J Mol Biol
376
1493
1508
83. BockMBishopKNTowersGStoyeJP
2000
Use of a transient assay for studying the genetic determinants of
Fv1 restriction.
J Virol
74
7422
7430
84. FuDCollinsK
2006
Human telomerase and Cajal body ribonucleoproteins share a unique
specificity of Sm protein association.
Genes Dev
20
531
536
85. SebastianSSokolskajaELubanJ
2006
Arsenic counteracts human immunodeficiency virus type 1
restriction by various TRIM5 orthologues in a cell type-dependent
manner.
J Virol
80
2051
2054
86. HaedickeJde Los SantosKGoffSPNaghaviMH
2008
The Ezrin-radixin-moesin family member ezrin regulates stable
microtubule formation and retroviral infection.
J Virol
82
4665
4670
87. ArriagadaGParedesRvan WijnenAJLianJBvan ZundertB
2010
1alpha,25-dihydroxy vitamin D(3) induces nuclear matrix
association of the 1alpha,25-dihydroxy vitamin D(3) receptor in osteoblasts
independently of its ability to bind DNA.
J Cell Physiol
222
336
346
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2011 Číslo 4
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- NF-κB Hyper-Activation by HTLV-1 Tax Induces Cellular Senescence, but Can Be Alleviated by the Viral Anti-Sense Protein HBZ
- Bacterial and Host Determinants of MAL Activation upon EPEC Infection: The Roles of Tir, ABRA, and FLRT3
- : Reservoir Hosts and Tracking the Emergence in Humans and Macaques
- On Being the Right Size: The Impact of Population Size and Stochastic Effects on the Evolution of Drug Resistance in Hospitals and the Community